
[image: image1.png]coordinated Highways Action Response Team

state highway administration

[image: image97.png]
CHART R4 Detailed Design Revision 1
Contract SHA-06-CHART

· Document # WO17-DS-001R1
· Work Order 17, Deliverable 4

· March 5, 2010
· By

· CSC
[image: image99.png]
	Revision
	Description
	Pages Affected
	Date

	0
	Initial Release
	All
	11/24/2009

	1
	NTCIP Compliance Tester
	1-1,2-1,2-11,2-18,2-29,3-1,4-20 – 4-24, 5-14 – 5-26, 5-119 – 5-125, 6-2, 6-4, 6-5, 6-6, 6-13, 6-14, 7-1
	3/5/2010

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

1-11
Introduction

1.1
Purpose
1-1
1.2
Objectives
1-1
1.3
Scope
1-1
1.4
Design Process
1-2
1.5
Design Tools
1-2
1.6
Work Products
1-2
2
Architecture
2-1
2.1
Network/Hardware
2-1
2.2
Software
2-1
2.2.1
COTS Products
2-1
2.2.2
Deployment /Interface Compatibility
2-3
2.2.2.1
External Interfaces
2-3
2.2.2.2
Internal Interfaces
2-6
2.3
Security
2-10
2.4
Data
2-11
2.4.1
Data Storage
2-11
2.4.1.1
Database
2-11
2.4.1.2
CHART Flat Files
2-24
2.4.2
Database Design
2-29
2.4.2.1
User/System Management
2-30
2.4.2.2
Device Configuration
2-30
2.4.2.3
Device Status
2-30
2.4.2.4
Traffic Event Response Planning
2-30
2.4.2.5
Alerts
2-31
2.4.2.6
Notification
2-31
2.4.2.7
Schedules
2-31
2.4.2.8
System Parameters
2-31
2.4.2.9
Travel Routes
2-31
2.4.2.10
Replication
2-32
2.4.2.11
Archiving
2-32
3
Key Design Concepts
3-1
3.1
NTCIP v2 DMS
3-1
3.2
Watchdog
3-1
3.3
CHART NTCIP Compliance Tester
3-1
3.4
Error Processing
3-1
3.5
Packaging
3-2
3.6
Assumptions and Constraints
3-5
4
Use Cases
4-7
4.1
R4HighLevel (Use Case Diagram)
4-7
4.1.1
Administrator (Actor)
4-7
4.1.2
Configure Devices (Use Case)
4-7
4.1.3
Configure NTCIP DMS (Use Case)
4-8
4.1.4
Create NTCIP DMS (Use Case)
4-8
4.1.5
Manage Alerts And Notifications (Use Case)
4-8
4.1.6
Manage Devices (Use Case)
4-8
4.1.7
Manage NTCIP DMS (Use Case)
4-8
4.1.8
Manage Services (Use Case)
4-8
4.1.9
Operator (Actor)
4-8
4.1.10
View Device Details (Use Case)
4-9
4.2
R4_NTCIP_DMS_Uses (Use Case Diagram)
4-9
4.2.1
Administrator (Actor)
4-9
4.2.2
Configure NTCIP DMS (Use Case)
4-10
4.2.3
Create NTCIP DMS (Use Case)
4-10
4.2.4
Operator (Actor)
4-10
4.2.5
Perform NTCIP Pixel Test (Use Case)
4-10
4.2.6
Poll DMS (Use Case)
4-10
4.2.7
Poll NTCIP Extended Status (Use Case)
4-10
4.2.8
Set Message (Use Case)
4-10
4.2.9
Set NTCIP Control Mode to Central (Use Case)
4-11
4.2.10
System (Actor)
4-11
4.2.11
View NTCIP DMS Configuration (Use Case)
4-11
4.2.12
View NTCIP Extended Status (Use Case)
4-11
4.2.13
View NTCIP Status (Use Case)
4-11
4.3
R4ManageServices (Use Case Diagram)
4-11
4.3.1
Administrator (Actor)
4-12
4.3.2
Detect Failed Service (Use Case)
4-12
4.3.3
Filter Services (Use Case)
4-12
4.3.4
Issue Alert for Failed Service (Use Case)
4-12
4.3.5
Maintain Service Status (Use Case)
4-13
4.3.6
Manage Service (Use Case)
4-13
4.3.7
Monitor Services (Use Case)
4-13
4.3.8
Ping All Watchdog's Monitored Services (Use Case)
4-14
4.3.9
Ping Service Direct from GUI (Use Case)
4-14
4.3.10
Ping Service Via Watchdog (Use Case)
4-14
4.3.11
Poll Services (Use Case)
4-14
4.3.12
Restart Failed Service (Use Case)
4-14
4.3.13
Restart Service (Use Case)
4-15
4.3.14
Send Notification for Failed Service (Use Case)
4-15
4.3.15
Set Service Log Level (Use Case)
4-15
4.3.16
Show or Hide Watchdog Services (Use Case)
4-15
4.3.17
Sort Services (Use Case)
4-15
4.3.18
Start Service (Use Case)
4-16
4.3.19
Stop Service (Use Case)
4-16
4.3.20
System (Actor)
4-16
4.3.21
View Service Details (Use Case)
4-16
4.3.22
View Services (Use Case)
4-16
4.3.23
View Watchdog Service Details (Use Case)
4-17
4.4
Release4ManageAlertsAndNotifications (Use Case Diagram)
4-17
4.4.1
Accept Alert (Use Case)
4-18
4.4.2
Close Alert (Use Case)
4-18
4.4.3
Comment On Alert (Use Case)
4-18
4.4.4
Confirm Unique Alert (Use Case)
4-19
4.4.5
Create External Connection Alert (Use Case)
4-19
4.4.6
Create External Event Alert (Use Case)
4-19
4.4.7
Create Toll Rate Alert (Use Case)
4-19
4.4.8
Create Travel Time Alert (Use Case)
4-19
4.4.9
Delay Alert (Use Case)
4-20
4.4.10
Manually Escalate Alert (Use Case)
4-20
4.4.11
Operator (Actor)
4-20
4.4.12
Resolve Alert (Use Case)
4-20
4.4.13
Send External Connection Notification (Use Case)
4-20
4.4.14
Send External Event Notification (Use Case)
4-21
4.4.15
Send Toll Rate Notification (Use Case)
4-21
4.4.16
Send Travel Time Notification (Use Case)
4-21
4.4.17
System (Actor)
4-21
4.4.18
Unaccept Alert (Use Case)
4-21
4.4.19
Undelay Alert (Use Case)
4-21
4.4.20
View Alert Details (Use Case)
4-21
4.4.21
View Alerts (Use Case)
4-22
4.5
R4VerifyNTCIPDMSCompatibility (Use Case Diagram)
4-22
4.5.1
Configure NTCIP DMS Complatibility Tester (Use Case)
4-22
4.5.2
DMS Supplier (Actor)
4-23
4.5.3
Perform NTCIP DMS Compatibility Tests (Use Case)
4-23
4.5.4
Save NTCIP DMS Compatibility Test Results (Use Case)
4-23
4.5.5
Test Blank DMS Command (Use Case)
4-23
4.5.6
Test DMS Poll Now Command (Use Case)
4-23
4.5.7
Test Get Extended DMS Status Command (Use Case)
4-23
4.5.8
Test Perform DMS Pixel Test Command (Use Case)
4-23
4.5.9
Test Reset DMS Command (Use Case)
4-23
4.5.10
Test Set DMS Central Control Mode Command (Use Case)
4-23
4.5.11
Test Set DMS Message Command (Use Case)
4-23
4.5.12
View NTCIP DMS Compatibility Test Results (Use Case)
4-24
5
Detailed Design
5-1
5.1
Human-Machine Interface
5-1
5.1.1
NTCIP v2 DMS Feature
5-1
5.1.1.1
NTCIP Details Page
5-1
5.1.1.2
NTCIP DMS Extended Status Page
5-2
5.1.1.3
Add NTCIP DMS
5-2
5.1.1.4
Edit NTCIP DMS Configuration
5-3
5.1.2
Watchdog Feature
5-4
5.1.2.1
Monitor Services
5-4
5.1.2.2
Service Details
5-6
5.1.2.3
Watchdog Service Details
5-10
5.1.2.4
Service Monitoring Details
5-11
5.1.3
NTCIP DMS Compliance Tester
5-14
5.1.3.1
Main Window
5-14
5.1.3.2
Communication Settings
5-17
5.1.3.3
Sign Settings
5-20
5.1.3.4
Tests
5-22
5.1.3.5
Save Results
5-23
5.1.3.6
Clear Results
5-24
5.1.3.7
Help
5-25
5.2
Alert Module
5-26
5.2.1
Class Diagrams
5-26
5.2.1.1
AlertModule (Class Diagram)
5-26
5.2.1.2
ProxyAlertClasses (Class Diagram)
5-35
5.2.2
SequenceDiagrams
5-39
5.3
Corba Utilities
5-39
5.3.1
Class Diagrams
5-39
5.3.1.1
EventServiceClasses (Class Diagram)
5-39
5.3.2
Sequence Diagrams
5-40
5.3.2.1
EventService:Initialization (Sequence Diagram)
5-40
5.4
DMS Control Module
5-41
5.4.1
Class Diagrams
5-41
5.4.2
Sequence Diagrams
5-41
5.4.2.1
DMSControlModule:SetConfiguration (Sequence Diagram)
5-41
5.5
DMS Protocols
5-42
5.5.1
Class Diagrams
5-42
5.5.1.1
DMSProtocolsPkg (Class Diagram)
5-42
5.5.2
Sequence Diagrams
5-45
5.5.2.1
NTCIPProtocolHdlr:GetExtendedStatus (Sequence Diagram)
5-45
5.5.2.2
NTCIPProtocolHdlr:PerformPixelTest (Sequence Diagram)
5-46
5.5.2.3
NTCIPProtocolHdlr:SetCentralControlMode (Sequence Diagram)
5-47
5.5.2.4
NTCIPProtocolHdlr:SetMessage (Sequence Diagram)
5-48
5.6
System Interfaces
5-49
5.6.1
Class Diagrams
5-49
5.6.1.1
AlertManagement (Class Diagram)
5-49
5.6.1.2
Common3 (Class Diagram)
5-55
5.6.1.3
DMSControl (Class Diagram)
5-57
5.6.1.4
EventChannelAdmin (Class Diagram)
5-67
5.6.2
Sequence Diagrams
5-68
5.7
Utility Package
5-68
5.7.1
Class Diagrams
5-68
5.7.1.1
UtilityClasses (Class Diagram)
5-68
5.7.2
Sequence Diagrams
5-75
5.8
Watchdog Service Package
5-75
5.8.1
Class Diagrams
5-75
5.8.1.1
WatchdogServiceClasses (Class Diagram)
5-75
5.8.2
Sequence Diagrams
5-78
5.8.2.1
CreateServiceAlertCmd:execute (Sequence Diagram)
5-78
5.8.2.2
DiscoverLocalServicesTask:run (Sequence Diagram)
5-79
5.8.2.3
PerformShellCommandsCmd:execute (Sequence Diagram)
5-80
5.8.2.4
WatchdogModule:init (Sequence Diagram)
5-81
5.8.2.5
WatchdogModule:queryMonitoredServiceAsynch (Sequence Diagram)
5-82
5.8.2.6
WatchdogModule:queryMonitoredServiceSynch (Sequence Diagram)
5-83
5.8.2.7
WatchdogServiceImpl:getMonitoredServiceInfo (Sequence Diagram)
5-84
5.8.2.8
WatchdogServiceImpl:main (Sequence Diagram)
5-85
5.8.2.9
WatchdogServiceImpl:pingAllMonitoredServices (Sequence Diagram)
5-86
5.8.2.10
WatchdogServiceImpl:pingService (Sequence Diagram)
5-87
5.8.2.11
WatchdogServiceImpl:restartService (Sequence Diagram)
5-88
5.8.2.12
WatchdogServiceImpl:startService (Sequence Diagram)
5-88
5.8.2.13
WatchdogServiceImpl:stopService (Sequence Diagram)
5-89
5.9
GUI Alerts - Data
5-90
5.9.1
Class Diagrams
5-90
5.9.1.1
data.alerts.classes (Class Diagram)
5-90
5.9.2
Sequence Diagrams
5-94
5.10
GUI Alerts - Servlet
5-94
5.10.1
Class Diagrams
5-94
5.10.2
Sequence Diagrams
5-94
5.10.2.1
chartlite.servlet.alerts:resolveAlert (Sequence Diagram)
5-94
5.11
GUI CHART Service - data
5-96
5.11.1
Class Diagrams
5-96
5.11.1.1
ChartServiceDataClasses (Class Diagram)
5-96
5.11.2
Sequence Diagrams
5-99
5.11.2.1
ChartServices:Discovery (Sequence Diagram)
5-99
5.11.2.2
WebWatchdogService:updateMonitoredServiceStatus (Sequence Diagram)
5-101
5.12
GUI CHART Service - servlet
5-103
5.12.1
Class Diagrams
5-103
5.12.1.1
ChartServiceServletClasses (Class Diagram)
5-103
5.12.2
Sequence Diagrams
5-106
5.12.2.1
MonitorServicesReqHdlr:processBasicServiceCmd (Sequence Diagram)
5-106
5.12.2.2
MonitorServicesReqHdlr:processFilterWatchdogs (Sequence Diagram)
5-106
5.12.2.3
MonitorServicesReqHdlr:processMonitorServices (Sequence Diagram)
5-107
5.12.2.4
MonitorServicesReqHdlr:processPingSitesServices (Sequence Diagram)
5-108
5.12.2.5
MonitorServicesReqHdlr:processSetServiceLogLevel (Sequence Diagram)
5-109
5.12.2.6
MonitorServicesReqHdlr:processViewServiceDetails (Sequence Diagram)
5-110
5.12.2.7
ServicesPingThread:run (Sequence Diagram)
5-110
5.13
GUI DMS - data
5-111
5.13.1
Class Diagrams
5-111
5.13.1.1
GUIDMSDataClasses (Class Diagram)
5-111
5.13.2
Sequence Diagrams
5-115
5.13.2.1
WebDMSFactory:createDMS (Sequence Diagram)
5-115
5.14
GUI DMS - servlet
5-116
5.14.1
Class Diagrams
5-116
5.14.2
Sequence Diagrams
5-116
5.14.2.1
chartlite.servlet.dms:parseBasicConfigSettings (Sequence Diagram)
5-116
5.14.2.2
chartlite.servlet.dms:setCentralControlMode (Sequence Diagram)
5-116
5.15
NTCIPDMSComplianceTester
5-118
5.15.1
Class Diagrams
5-118
5.15.1.1
NTCIPDMSComplianceTesterClasses (Class Diagram)
5-118
5.15.2
Sequence Diagrams
5-123
5.15.2.1
NTCIPDMSTester:pollNow (Sequence Diagram)
5-123
6
Mapping to Requirements
6-1
7
Acronyms/Glossary
7-1

Table of Figures

2-5Figure 2‑1. CHART and External Interfaces

Figure 2‑2. CHART R4 External Interface Deployment
2-6
Figure 2‑3. CHART Internal Interfaces (GUI Deployment)
2-8
Figure 2‑4. CHART Internal Interfaces (Server Deployment)
2-9
Figure 2‑5. CHART R4 Database Architecture
2-12
Figure 2‑6. Entity Relationship Diagrams for CHART R4
2-21
Figure 4‑1. R4HighLevel (Use Case Diagram)
4-7
Figure 4‑2. R4_NTCIP_DMS_Uses (Use Case Diagram)
4-9
Figure 4‑3. R4ManageServices (Use Case Diagram)
4-12
Figure 4‑4. R4ManageAlertsAndNotifications (Use Case Diagram)
4-18
Figure 5‑1. NTCIP DMS Details Page (excerpt)
5-1
Figure 5‑2. NTCIP Extended Status Page
5-2
Figure 5‑3. Add NTCIP DMS Page (excerpt)
5-3
Figure 5‑4. Edit NTCIP Basic Settings Page (excerpt)
5-4
Figure 5‑5. Monitor Services menu item
5-5
Figure 5‑6. Monitor Services page
5-5
Figure 5‑7. Monitor Services Time Column Filter Example
5-6
Figure 5‑8. Service Details
5-7
Figure 5‑9. Watchdog Details - Monitored Services
5-10
Figure 5‑10. Watchdog Monitored Unidentified Services
5-11
Figure 5‑11. Watchdog Service Monitoring Details Page Heading
5-11
Figure 5‑12. Service Auto Restart Configuration
5-11
Figure 5‑13. Service Failure Alert Configuration
5-12
Figure 5‑14. Service Failure Notification Configuration
5-13
Figure 5‑15. Service Auto-Restart Commands
5-13
Figure 5‑16 NTCIP DMS Compliance Tester Main Window
5-14
Figure 5‑17 NTCIP DMS Compliance Testser File Menu
5-14
Figure 5‑18 NTCIP DMS Compliance Tester Configuration Menu
5-15
Figure 5‑19 NTCIP DMS Compliance Tester Tests Menu
5-16
Figure 5‑20 NTCIP DMS Compliance Tester Help Menu
5-17
Figure 5‑21 NTCIP DMS Compliance Tester Communications Settings (RS232)
5-17
Figure 5‑22 NTCIP DMS Compliance Tester Communication Settings (TCP/IP)
5-18
Figure 5‑23 NTCIP DMS Compliance Tester Sign Settings
5-20
Figure 5‑24 NTCIP DMS Compliance Tester Sample Test Results
5-22
Figure 5‑25 NTCIP DMS Compliance Tester Set Message Dialog
5-23
Figure 5‑26 NTCIP DMS Compliance Tester Save Results
5-24
Figure 5‑27 NTCIP DMS Compliance Tester with Results File Name
5-24
Figure 5‑28 NTCIP DMS Compliance Tester About Dialog
5-25
Figure 5‑29 NTCIP DMS Compliance Tester Help Dialog
5-25
Figure 5‑30. AlertModule (Class Diagram)
5-27
Figure 5‑31. ProxyAlertClasses (Class Diagram)
5-35
Figure 5‑32. EventServiceClasses (Class Diagram)
5-39
Figure 5‑33. EventService:Initialization (Sequence Diagram)
5-41
Figure 5‑34. DMSControlModule:SetConfiguration (Sequence Diagram)
5-42
Figure 5‑35. DMSProtocolsPkg (Class Diagram)
5-43
Figure 5‑36. NTCIPProtocolHdlr:GetExtendedStatus (Sequence Diagram)
5-46
Figure 5‑37. NTCIPProtocolHdlr:PerformPixelTest (Sequence Diagram)
5-47
Figure 5‑38. NTCIPProtocolHdlr:SetCentralControlMode (Sequence Diagram)
5-48
Figure 5‑39. NTCIPProtocolHdlr:SetMessage (Sequence Diagram)
5-49
Figure 5‑40. AlertManagement (Class Diagram)
5-50
Figure 5‑41. Common3 (Class Diagram)
5-56
Figure 5‑42. DMSControl (Class Diagram)
5-58
Figure 5‑43. EventChannelAdmin (Class Diagram)
5-67
Figure 5‑44. UtilityClasses (Class Diagram)
5-69
Figure 5‑45. WatchdogServiceClasses (Class Diagram)
5-76
Figure 5‑46. CreateServiceAlertCmd:execute (Sequence Diagram)
5-79
Figure 5‑47. DiscoverLocalServicesTask:run (Sequence Diagram)
5-80
Figure 5‑48. PerformShellCommandsCmd:execute (Sequence Diagram)
5-81
Figure 5‑49. WatchdogModule:init (Sequence Diagram)
5-82
Figure 5‑50. WatchdogModule:queryMonitoredServiceAsynch (Sequence Diagram)
5-83
Figure 5‑51. WatchdogModule:queryMonitoredServiceSynch (Sequence Diagram)
5-84
Figure 5‑52. WatchdogServiceImpl:getMonitoredServiceInfo (Sequence Diagram)
5-85
Figure 5‑53. WatchdogServiceImpl:main (Sequence Diagram)
5-86
Figure 5‑54. WatchdogServiceImpl:pingAllMonitoredServices (Sequence Diagram)
5-87
Figure 5‑55. WatchdogServiceImpl:pingService (Sequence Diagram)
5-87
Figure 5‑56. WatchdogServiceImpl:restartService (Sequence Diagram)
5-88
Figure 5‑57. WatchdogServiceImpl:startService (Sequence Diagram)
5-89
Figure 5‑58. WatchdogServiceImpl:stopService (Sequence Diagram)
5-90
Figure 5‑59. data.alerts.classes (Class Diagram)
5-91
Figure 5‑60. chartlite.servlet.alerts:resolveAlert (Sequence Diagram)
5-96
Figure 5‑61. ChartServiceDataClasses (Class Diagram)
5-97
Figure 5‑62. ChartServices:Discovery (Sequence Diagram)
5-100
Figure 5‑63. WebWatchdogService:updateMonitoredServiceStatus (Sequence Diagram)
5-102
Figure 5‑64. ChartServiceServletClasses (Class Diagram)
5-103
Figure 5‑65. MonitorServicesReqHdlr:processBasicServiceCmd (Sequence Diagram)
5-106
Figure 5‑66. MonitorServicesReqHdlr:processFilterWatchdogs (Sequence Diagram)
5-107
Figure 5‑67. MonitorServicesReqHdlr:processMonitorServices (Sequence Diagram)
5-108
Figure 5‑68. MonitorServicesReqHdlr:processPingSitesServices (Sequence Diagram)
5-109
Figure 5‑69. MonitorServicesReqHdlr:processSetServiceLogLevel (Sequence Diagram)
5-109
Figure 5‑70. MonitorServicesReqHdlr:processViewServiceDetails (Sequence Diagram)
5-110
Figure 5‑71. ServicesPingThread:run (Sequence Diagram)
5-111
Figure 5‑72. GUIDMSDataClasses (Class Diagram)
5-112
Figure 5‑73. WebDMSFactory:createDMS (Sequence Diagram)
5-115
Figure 5‑74. chartlite.servlet.dms:parseBasicConfigSettings (Sequence Diagram)
5-116
Figure 5‑75. chartlite.servlet.dms:setCentralControlMode (Sequence Diagram)
5-117
Figure 5‑76. NTCIPDMSComplianceTesterClasses (Class Diagram)
5-118
Figure 5‑77. NTCIPDMSTester:pollNow (Sequence Diagram)
5-124

1 Introduction

1.1 Purpose

This document describes the design of the software for Release 4 of the CHART system. This build provides the following new features:

· NTCIP v2 DMS: CHART R4 ensures support for NTCIP version 2 DMSs. Additionally, CHART will perform additional actions and acquire additional data from version 1 and version 2 NTCIP DMSs which was available in version 1 of the NTCIP specification, but not previously implemented in CHART.
· An new CHART NTCIP DMS Compliance Tester, a stand alone software application designed for use by DMS vendors to check if their DMS is compatible with the CHART system..
· Watchdog: The fix for PR LevA00000687 for CHART R4 provides a coordinated watchdog service for watching the status of other CHART services. The watchdog service will be able to detect failure of other services it is watching and restart failed services if/as configured to do so. The Watchdog service will also be used as a primary source of information for the Monitor Services function.

· JacORB: The fix for PR LevA00000671 for CHART R4 provides stability updates for the Object Request Broker (ORB) underlying the CHART system.

Release R4 also includes a number of other PR fixes aside from the Watchdog fix and the JacORB stability upgrade, but none of these PR fixes are significant enough to warrant deisgn work.

1.2 Objectives

The main objective of this detailed design document is to provide software developers with a framework in which to implement the requirements identified for the NTCIP v2 DMS, CHART NTCIP Compliance Tester, and Watchdog features of CHART. A matrix mapping requirements to the design is presented in Section 6.

1.3 Scope

This design is limited to Release 4 of the CHART System and the CHART NTCIP Compliance Tester. It addresses both the design of the server components of CHART and the Graphical User Interface (GUI) components of CHART. Since the CHART GUI is browser based, the GUI refers to both the user interface and the components actually executing on the web server. The compliance tester is a stand alone application and this design covers the entirety of this application, including its Graphical User Interface. This design does not include designs for components implemented in earlier releases of the CHART system.

1.4 Design Process

The design was created by capturing the requirements of the system in UML Use Case diagrams. Class diagrams were generated showing the high level objects that address the Use Cases. Sequence diagrams were generated to show how each piece of major functionality will be achieved. This process was iterative in nature – the creation of sequence diagrams sometimes caused re-engineering of the class diagrams, and vice versa.

1.5 Design Tools

The work products contained within this design will be extracted from the Tau Unified Modeling Language (UML) Suite design tool. Within this tool, the design is contained in two CHART projects, R3B4-Aug09 and Release 4, in the Analysis phase and System Design phase of each.

1.6 Work Products

The final Release 4 design consists of the following work products:

· Use Case diagrams that capture the requirements of the system

· UML Class diagrams, showing the software objects which allow the system to accommodate the uses of the system described in the Use Case diagrams

· UML Sequence diagrams showing how the classes interact to accomplish major functions of the system

2 Architecture

The sections below discuss specific elements of the architecture and software components that are created, changed, or used by the Watchdog, NTCIP v2 DMS, or CHART NTCIP Compliance Tester features.
2.1 Network/Hardware

The Watchdog feature introduces 2 new services (both Watchdog services) that will run on each CHART server. These services are CORBA services and accept connections on TCP/IP ports as specified during installation. By default, the watchdog listens on port 9061 and its backup listens on port 9062. All CHART GUIs access these services via these ports. The NTCIP v2 DMS feature introduces no new network or hardware components (beyond confirming the ability to communicate with DMSs that support NTCIP version 2).
The NTCIP DMS Compliance Tester is a stand alone application used external to the CHART System, and therefore has no impact on the CHART system’s network or hardware.

2.2 Software

CHART uses the Common Object Request Broker Architecture (CORBA) as the base architecture, with custom built software objects made available on the network to allow their data to be accessed via well defined CORBA interfaces. This architecture will continue forward for Release 4. There will be no major changes to the CHART software architecture infrastructure.

The NTCIP DMS Compliance Tester is a stand alone application used external to the CHART System, and does not affect the software architecture of the CHART system. The software architecture of the NTCIP DMS Compliance Tester itself is a simple Swing based Java GUI that makes use of some CHART software objects to communicate with the DMS being tested.

2.2.1 COTS Products

CHART uses numerous COTS products for both run-time and development. No new COTS products are added with R4. COTS products are documented in Table 2-1.

Table 2‑1 CHART R4 COTS Products

	Product Name
	Description

	Apache ActiveMQ
	CHART uses this to connect to RITIS JMS queues

	Apache Jakarta Ant
	CHART uses Apache Jakarta Ant 1.6.5 to build CHART applications and deployment jars.

	Apache Tomcat
	CHART uses Apache Tomcat 6.0.18 as the GUI web server.

	Attention! CC
	CHART uses Attention! CC Version 2.1 to provide notification services.

	Attention! CC API
	CHART uses Attention! CC API Version 2.1 to interface with Attention! CC.

	Attention! NS
	CHART uses Attention! NS Version 6.1 to provide notification services.

	Bison/Flex
	CHART uses Bison and Flex as part of the process of compiling binary macro files used for performing camera menu operations on Vicon Surveyor VFT cameras.

	CoreTec Decoder Control
	CHART uses a CoreTec supplied decoder control API for commanding CoreTec decoders.

	Dialogic API
	CHART uses the Dialogic API for sending and receiving Dual Tone Multi Frequency (DTMF) tones for HAR communications.

	Flex2 SDK
	The CHART GUI uses the Flex2 SDK, version 3.1 to provide the Flex compiler, the standard Flex libraries, and examples for building Flex applications.

	GIF89 Encoder
	Utility classes that can create .gif files with optional animation. This utility is used for the creation of DMS True Display windows.

	JDOM
	CHART uses JDOM b7 (beta-7) dated 2001-07-07. JDOM provides a way to represent an XML document for easy and efficient reading, manipulation, and writing.

	JacORB
	CHART uses a compiled, patched version of JacORB 2.2.4. The JacORB source code, including the patched code, is kept in the CHART source repository.

	Java Run-Time (JRE)
	CHART R4 will continue to use 1.5.0_16.

	JavaService
	CHART uses JavaService to install the server side Java software components as Windows services.

	JAXEN
	CHART uses JAXEN 1.0-beta-8 dated 2002-01-09. The Jaxen project is a Java XPath Engine. Jaxen is a universal object model walker, capable of evaluating XPath expressions across multiple models.

	JoeSNMP
	CHART uses JoeSNMP version 0.2.6 dated 2001-11-11. JoeSNMP is a Java based implementation of the SNMP protocol. CHART uses for commanding iMPath MPEG-2 decoders and for communications with NTCIP DMSs.

	JSON-simple
	CHART uses the JSON-simple java library to encode/decode strings that use JSON (JavaScript Object Notation).

	JTS
	CHART uses the Java Topology Suite (JTS) version 1.8.0 for geographical utility classes.

	NSIS
	CHART uses the Nullsoft Scriptable Installation System (NSIS), version 2.20, as the server side installation package.

	Nuance Text To Speech
	For text-to-speech (TTS) conversion CHART uses a TTS engine that integrates with Microsoft Speech Application Programming Interface (MSSAPI), version 5.1. CHART uses Nuance Vocalizer 4.0 with Nuance SAPI 5.1 Integration for Nuance Vocalizer 4.0.

	Oracle
	CHART uses Oracle 10.1.0.5 as its database and uses the Oracle 10G JDBC libraries (ojdbc1.4.jar) for all database transactions.

	O’Reilly Servlet
	Provides classes that allow the CHART GUI to handle file uploads via multi-part form submission.

	Prototype Javascript Library
	The CHART GUI uses the Prototype Javascript library, version 1.5.1, a cross-browser compatible Javascript library provides many features (including easy Ajax support).

	SAXPath
	CHART uses SAXPath 1.0-beta-6 dated 2001-09-27. SAXPath is an event-based API for XPath parsers, that is, for parsers which parse XPath expressions.

	Velocity Template Engine
	Provides classes that CHART GUI uses in order to create dynamic web pages using velocity templates.

	Vicon V1500 API
	CHART uses a Vicon supplied API for commanding the ViconV1500 CPU to switch video on the Vicon V1500 switch

2.2.2 Deployment /Interface Compatibility

2.2.2.1 External Interfaces

The updates for CHART R4 do not add any external interfaces to the CHART system. The diagram below presents an overall view of CHART within the context of other external systems. The green boundaries represent devices that the CHART software communicates with directly. The major external interfaces include:

1. CHART Web Server – Receives information from the CHART system for publishing on the Web. This information includes incident reports, lane closure data, speed sensor data, DMS messages, and camera video.

2. CHART Map – The CHART Web Event Listener is used to receive CORBA Events from CHART relating to roadway conditions for display with the CHART Mapping application. The data includes incident reports, lane closure data, DMS messages, and speed sensor data. CHART also queries the mapping database to get counties, roads, and road intersection data.

3. Emergency Operations Reporting System (EORS) – Legacy system providing information on road closures and road status.

4. Media – Commercial and public broadcasters.

5. SCAN – SHA legacy system supplying weather sensor data.

6. CHART Reporting Tool – Generates reports from data on CHART databases.

7. University of Maryland Center for Advanced Transportation Technology (CATT) Lab as Regional Integrated Transportation Information System (RITIS) - Receives CORBA Events from CHART. Provides SAE J2354 standard regional traffic events and TMDD standard DMS and TSS data via java messaging service connections.

8. Notification Recipients – Receive notification from CHART about significant events via e-mail or page/text.

9. INRIX – External system that provides travel time data to the CHART system. CHART connects to INRIX via an HTTPS/XML interface.

10. Vector – External (MdTA) system that provides toll rate data to the CHART system. The Vector system connects to CHART via an HTTPS/XML interface provided by CHART.

[image: image2.emf]CHART

DMS

EORS

Baltimore Media

Washington Media

Broadcast

Television

Beacons

HARs

RTMS

Speed Data

CCTV

Live

Traffic

Images

Statewide HAR

& DMS Network

Traffic Cameras

Snapshot Cameras

DMS Messages

Interactive Mapping

Incident Reports

Lane Closures

Speed Sensor Data

Weather Station Data

Weather Service Data

SCAN

Weather Data

Snapshot Cameras

Roadway Surface Data

RWIS:

Reports from:

CHART & SHA Units

MSP and Local Police

Other Agencies

Travelers

CHART

WEB SITE

RITIS

UMD

Event

Listener

Event

Listener,

FTP

Regional Web

Services:

Traffic Land Video

CHART

Reporting

Tool

Regional

Event,

DMS,

Speed

data

INRIX

Travel Time

Data

Vector

Toll Rate

Data

Email Notifications

Text Notifications

Figure 2‑1. CHART and External Interfaces
There are no new external interfaces for CHART R4. The IIS/Tomcat instance is used to allow Vector to supply toll rate data to CHART via HTTP/XML. The RITIS service communicates via JMS. The INRIX import service, communicates with INRIX via HTTP/XML. Figure 2-2 describes existing external interfaces will be deployed within CHART.

[image: image3.emf]RITIS

CHART

Map

CHART

Public Web

Vector

Inside firewall

IIS Server

Apache Tomcat

PRIMARY

TollRate

ImportServlet

Similar to the ChartGUI.

TollRateImportServlet provides web service to allow data providers (Vector) to

import toll rates into CHART. Toll rate data complying with the TollRates.xsd will be

converted to CORBA messages. It interacts with Link/Route centric CORBA interface(s).

Authentication will be handled consistently among servlets whether they are import or

export oriented.

Outside firewall.

IIS Server

Apache Tomcat

IIS/Tomcat pairs running on

two separate servers or two

virtual servers.

SECONDARY

TollRate

ImportServlet

RITIS

JMS

DMSService

RITIS Service

TSSService

TrafficEventService

EventImportModule R3B2

DMSImportModule R3B3

TravelRouteService

TSSImportModule R3B3

INRIX Import Service

TravelTimeImportModule

INRIX

WebService

All modules are configured

to acquire data for

import from RITIS

JMS and to translate

imported messages into

CHART.

Outside firewall.

The TravelTimeImportModule

is configured to acquire data for

import from WebService

provided by INRIX and translate

INRIX messages to CHART Link

Route Data.

Outside firewall

CHART Map Server

CHART Web Listener

HARService

Figure 2‑2. CHART R4 External Interface Deployment
2.2.2.2 Internal Interfaces

The architecture for the CHART system distributes complete system functionality to a number of districts throughout the State of Maryland. Each of these complete systems can provide full functionality for the devices connected to the system and objects created within that system (such as traffic events), and provides functionality for other district's systems that are available. Thus the absence of one district's server does not affect the ability of another district to use their own system or other systems that are available. Although the server deployment is spread across multiple sites, the user sees one large system, as CORBA is used to pull together objects served from the many deployment sites.

The CHART GUI is able to locate the software objects at all deployment sites through the use of the CORBA Trading Service. A CORBA Trading Service runs at each deployment site. Each CHART service that publishes CORBA objects offers the objects through its local CORBA Trading Service. The GUI provides a unified view of the system, even though the system is actually distributed over multiple deployment sites.

In addition to showing the software objects throughout the system on a single interface, it is also necessary to reflect the current state of the software objects as they are changed during real time operations. The CORBA Event Service is used to allow objects to push changes in their state to the GUI, other back end CHART services, the CHART Event Listener, or any other interested CORBA clients. Each deployment site has an instance of a CORBA Event Channel Factory, which is an extension of the CORBA Event Service that allows multiple event channels. Each CHART service whose objects are subject to real time changes will create one or more Event Channels in its local Event Channel Factory. Each event channel is earmarked for a specific class of events (such as DMS events). Each service that creates channels in the CORBA Event Channel Factory publishes the event channel in the CORBA Trading Service and then uses the channel to push events relating to object state, configuration updates, etc.

An interface that wishes to listen for events at a system wide level discovers all of the event channels via the CORBA Trading Service and registers itself as a consumer on each of the event channels. Using this scheme, an interface uses the Trading Service to discover all software objects and Event Channels regardless of their deployment site. The interface may then provide the user with a unified view of the system, both in the objects presented and the ability to show near real time updates of these objects. Since the nature of the system is dynamic, processes periodically rediscover new objects and event channels from known districts via the Trading Service.

Most CHART background services which communicate with physical devices deployed along Maryland highways do so via FMS servers. One or more CHART Communications Services run on each FMS in the system. The CHART background services requiring FMS services for this purpose are the DMS Service, HAR Service (which also serves SHAZAMs), and the TSS Service. The communications between these three services and the Communications Services are IIOP, over TCP/IP. Communications from the Communications Services out to the physical devices are accomplished by telephone (via either POTS or ISDN modems, or via Telephony DTMF communications) or by direct serial connection. Telephone service is usually provided via landline, although cellular service occasionally needs to be utilized.

CHART background services that communicate with physical DMS and TSS devices also allow direct TCP/IP communications if supported by the devices. FMS servers and CHART Communications Services are not used by these background services to communicate with devices configured for this type of communication.

The remaining CHART background service controlling physical field devices is the Video Service. Video communication is accomplished via TCP/IP. Communication to CoreTec decoders is accomplished via proprietary CoreTec protocol over TCP/IP. Communication to iMPath decoders is accomplished via SNMP over TCP/IP, with published MIBs. CHART does not directly command either the iMPath or the CoreTec encoders; they are used only as a pass-through to pass camera control commands and responses to/from the attached cameras. CHART’s communication with the encoders, then, is via TCP/IP with no proprietary protocol involved. Communications to the Vicon V1500 NTSC video switch is accomplished via a proprietary Vicon protocol over TCP/IP. Once video connections are thus established, video flows directly from encoder to decoder via MPEG2 or MPEG4 over TCP/IP, and/or through a V1500 analog video switch.

The following deployment diagrams show the deployment of CHART at a single district within the larger CHART system. The diagrams depict the various computers that are deployed at the site. Each computer shows the processes that are installed and running on it. The lines between the computers show the protocols that are used for communication between the various processes involved.
Nothing in R4 changes the CHART GUI deployment. The GUI deployment diagram shows that the web browser (Internet Explorer) on the operator workstation can send requests to the GUI web server machine using the standard HTTP or HTTPS protocols. These requests are handled by the Microsoft IIS web server process which uses the requested URL to determine that the request is intended for the CHART GUI servlet application. IIS forwards requests for CHART to the installed Apache Tomcat application which passes the request to the CHART GUI Servlet for processing. This servlet communicates with the processes on the CHART Server machine via the standard CORBA IIOP protocol which utilizes the TCP/IP protocol. Additionally this servlet communicates with the CHART Database server via the JDBC API which utilizes the TCP/IP protocol.
[image: image4.emf]Oracle RDBMS ServiceCHART Database ServerCHART ServicesCORBA Event ServiceCORBA Trading ServiceCHART Application ServerCHART Application ServerSee Server Deployment Diagramfor more details.CHART GUI ServletApache TomcatMicrosoft IISGUI Web ServerGUI Flex2 ApplicationAdobe Flash Player 9Audio Recording AppletJava 5 Plug InInternet ExplorerOperator WorkstationTCPIP-JDBCTCPIP - JDBCIIOPHTTPS-HTMLTCPIP-JDBCTCPIP-JDBCIIOPHTTPS-XMLHTTPS-JSONHTTPS

Figure 2‑3. CHART Internal Interfaces (GUI Deployment)
The Watchdog feature of CHART R4 adds two new services to each CHART application; the Watchdog service and a backup Watchdog service. The server deployment diagram shows the services running on the CHART application server in more detail. The CHART application server uses the standard CORBA IIOP protocol to communicate to the GUI web server to handle user requests and to update system state, and to the field management (FMS) server to communicate to DMS, HAR, SHAZAM, and TSS field devices. It also uses TCP/IP to control camera and monitor video devices and certain DMS and TSS devices. Finally, the CHART application server communicates with the CHART Mapping database to obtain roadway location information via the JDBC API which utilizes the TCP/IP protocol.
[image: image5.emf]CHART Application Server

CORBA Trading Service

User Manager Service

Alert Service

Message Utility Service

Schedule Service

MessageTemplateModule

Travel Route Service

TravelRouteModule

DMS Service

Travel RouteFactory

TravelRoute

HAR Service

See GUI Deployment Diagram

for details.

Web Server

TSS Service

RoadwayLink

Video Service

Traffic Event Service

EORS Service

Roadway Location Lookup Service

GeoAreaModule

CORBA Event Services

Field Management Server

Communications Service

Notification Service

Video Device

[Cameras Monitors]

Runs on one

primary server and

one backup server

Oracle RDBMS Service

EORS Server

Watchdog Service

EORS DB

Watchdog Service

CHART Mapping Server

Mapping DB

Field Devices

[DMSs HARs SHAZAMs TSSs]

CHART Mapping Server

CHART Listener Service

UMd Listener Server

UMd Listener Service

See External Interfaces

Deployment Diagram for

additional External Inteface

Modules.

Notification Server

New for R4:

One Watchdog Service configured to monitor all other CHART services plus a second Watchdog Service

configured to monitor the first Watchdog Service.

COTS Notification Tool

Firewall

RITIS System

Email-Fax-Page Providers

UPDATED FOR R4.

One new alert type

(for Watchdog).

ISDN POTS

Telephony

ISDN POTS

Telephony

IIOPIIOP

TCPIPTCPIP

IIOPIIOP

TCPIP-JDBCTCPIP-JDBC

IIOPIIOP

TCPIP-JDBCTCPIP-JDBC

IIOPIIOP

ISDN POTS

Telephony

ISDN POTS

Telephony

via Listener databasevia Listener database

COTSCOTS

TCPIPTCPIP

COTSCOTS

IIOPIIOP

IIOPIIOP

Figure 2‑4. CHART Internal Interfaces (Server Deployment)
2.3 Security
CHART R4 does not include any changes to security. The CHART System itself runs entirely behind the MDOT firewall. There are interfaces to the INRIX system, three connections to the RITIS system developed by the University of Maryland, and CHART hosts a web service accessed by the Vector system which also resides behind the MDOT firewall.

All external systems that connect to a CHART HTTPS/XML web service (currently just the Toll Rate Import web service, accessed only by Vector, to supply toll rate data) will be assigned a unique client ID and must be pre-configured in the CHART system by an Administrator to allow access. A public/private key pair will be generated by the Administrator for each external system, with the public key being stored in the CHART system, and the private key being provided to the external system owner for their use when connecting to the CHART system. Each request received by an external system will include the external system client ID and a digital signature created with their private key. CHART will validate all requests using the client’s public key to ensure the request is from a trusted source. The Vector system provides data to CHART and does not request data from CHART, and for this reason the signature validation is all that is required before CHART accepts toll rate data from Vector.

Since the CHART System runs entirely behind the MDOT firewall, user access to the CHART system via the GUI from the outside world must be specifically enabled for users to connect from specific external locations. Control of video cameras is ostensibly limited to users which can see camera images on a local monitor, which are limited in number and restricted to controlled locations within designated facilities.

The CHART browser interface can be configured to run with HTTP or HTTPS (Secure HTTP). The fielded production system is always configured to run with HTTPS. HTTPS provides an additional SSL or TLS encryption/authentication layer between HTTP and TCP, which protects data in transit between the client machine web browser and the web server machine. Additionally, the system runs with Microsoft’s Internet Information Services (IIS).

All users connecting to CHART are required to provide a user name and password before any CHART information is provided or any actions can be attempted. Invalid login attempts are logged to the CHART Operations Log (database table), a permanently archived log of system activity. Users with appropriate rights can see all users logged into the system and can force users off the system at any time, directly from the CHART GUI. Before editing the CHART dictionary, a particularly sensitive area, a logged on user is reauthenticated on the spot by requiring the user to provide a user name and password again.

When a legitimate CHART user logs in, he or she is granted certain functional rights, based on the user ID. These rights typically include, for instance, the ability to create, edit and close traffic events and create and execute response plan items in response to traffic events. Other rights allow direct interaction with CHART devices, such as the ability to put them offline, online, or into maintenance mode, and to issue maintenance mode commands. Users cannot perform actions for which they do not have rights. Typically, rather than graying out buttons, prohibited actions do not even appear on the user’s browser, so in most cases users may not even know what they are missing. There is a special “view-only” user configured which can see CHART status within the system but cannot perform any actions which would change system status in any way.

Many rights can be assigned to users on an organization-by-organization level. For instance, a user may be able to issue maintenance commands on one organization’s DMSs, but not others. The rights are stored in an opaque access control token obtained during the login transaction. Users cannot see or modify this token, and generally are not aware of its existence. It is held by the web service on behalf of the user and is passed from the web service to the background services on all but the most benign service requests.

2.4 Data

CHART R4 will be tested with thesame version (patch level) of Oracle as is currently deployed in the field.
2.4.1 Data Storage

The CHART System stores most of its data in an Oracle database. However, some data is stored in flat files on the CHART servers. This section describes both types of data.

The NTCIP DMS Compliance Tester stores configuration data in flat files to keep the user from having to reconfigure tests each time the tester is run. These files are discussed in the appropriate sections below.
2.4.1.1 Database

2.4.1.1.1 Database Architecture

The CHART Database architecture is shown in Figure 2-5.

[image: image98.png]

[image: image6]
2.4.1.1.2 Logical Design

2.4.1.1.2.1 Entity Relationship Diagram (ERD)

CHART R4 updates the ALERT, DMS, and DMS_STATUS tables only. Database entity relationship diagrams are shown below in the multiple pages of figures labeled collectively as Figure 2-6.
[image: image7.jpg]
[image: image8.jpg]
[image: image9][image: image10.emf][image: image11.jpg][image: image12.jpg][image: image13.jpg][image: image14.jpg]
Figure 2‑6. Entity Relationship Diagrams for CHART R4
2.4.1.1.2.2 Function to Entity Matrix Report
 The Create, Retrieve, Update, Delete (CRUD) matrix cross-references business functions to entities and shows the use of the entities by those functions. This report will be generated as part of the CHART O&M Guide.
2.4.1.1.2.3 Table Definition Report

In existing tables shown below:
· Deleted columns marked with a minus sign (“-“)

· Modified columns marked with an asterisk (“*”)

· New columns marked with a plus sign (“+”)

2.4.1.1.2.3.1 Tables Modified for NTCIP v2 DMS in CHART R4 Live Database

DMS (Existing)
 DEVICE_ID NOT NULL CHAR(32)

 DMS_MODEL_ID NOT NULL NUMBER(5)

 ORG_ORGANIZATION_ID NOT NULL CHAR(32)

 DB_CODE VARCHAR2(1)

 DEVICE_NAME NOT NULL VARCHAR2(15)

 DEVICE_LOCATION VARCHAR2(60)

 HAR_DEVICE_ID CHAR(32)

 COMM_LOSS_TIMEOUT NOT NULL NUMBER(10)

 DEFAULT_JUSTIFICATION_LINE NOT NULL NUMBER(3)

 DEFAULT_PAGE_OFF_TIME NOT NULL NUMBER(3)

 DEFAULT_PAGE_ON_TIME NOT NULL NUMBER(3)

 DROP_ADDRESS NOT NULL NUMBER(5)

 INITIAL_RESPONSE_TIMEOUT NOT NULL NUMBER(10)

 BEACON_TYPE NOT NULL NUMBER(3)

 SIGN_TYPE NOT NULL NUMBER(3)

 DEFAULT_PHONE_NUMBER VARCHAR2(25)

 DMS_DIRECTIONAL_CODE NUMBER(3)

 POLL_INTERVAL NOT NULL NUMBER(5)

 POLLING_ENABLED NOT NULL NUMBER(1)

 PORT_TYPE NUMBER

 PORT_MANAGER_TIMEOUT NUMBER

 BAUD_RATE NUMBER

 DATA_BITS NUMBER

 FLOW_CONTROL NUMBER

 PARITY NUMBER

 STOP_BITS NUMBER

 ENABLE_DEVICE_LOG NOT NULL NUMBER(1)

 VMS_CHARACTER_HEIGHT_PIXELS NOT NULL NUMBER(3)

 VMS_CHARACTER_WIDTH_PIXELS NOT NULL NUMBER(3)

 VMS_MAX_PAGES NOT NULL NUMBER(3)

 VMS_SIGN_HEIGHT_PIXELS NOT NULL NUMBER(5)

 VMS_SIGN_WIDTH_PIXELS NOT NULL NUMBER(5)

 CREATED_TIMESTAMP DATE

 UPDATED_TIMESTAMP DATE

 SHAZAM_BEACON_STATE NOT NULL NUMBER(1)

 SHAZAM_IS_MESSAGE_TEXT_MULTI NOT NULL NUMBER(1)

 DMS_SHAZAM_MSG VARCHAR2(1024)

 COMMUNITY_STRING VARCHAR2(16)

 CEN_ALERT_CENTER_ID CHAR(32)

 TRAVEL_TIME_QUEUE_LEVEL NUMBER(5)

 TOLL_RATE_QUEUE_LEVEL NUMBER(5)

 OVERRIDE_SCHEDULE_IND NUMBER(2)

 ENABLED_SPECIFIC_TIMES_IND NUMBER(2)

 TCP_HOST VARCHAR2(16)

 TCP_PORT NUMBER(5)

 DEFAULT_FONT_NUMBER NUMBER(2)

 DEFAULT_LINE_SPACING NUMBER(1)

 COMMFAIL_ALERT_CENTER_ID CHAR(32)

 COMMFAIL_NOTIF_GROUP_ID NUMBER(5)

 COMMFAIL_NOTIF_GROUP_NAME VARCHAR2(50)

 HWFAIL_NOTIF_GROUP_ID NUMBER(5)

 HWFAIL_NOTIF_GROUP_NAME VARCHAR2(50)

 EXT_ID_SYSTEM_ID VARCHAR2(35)

 EXT_ID_AGENCY_ID VARCHAR2(35)

 EXT_ID_DMS_ID VARCHAR2(256)

 HDLC_FRAME_REQUIRED NUMBER(1)

+DEFAULT_INTER_CHARACTER_SPACING NUMBER(3)

+DEFAULT_PAGE_JUSTIFICATION NUMBER(1)

DMS_STATUS (Existing)
 DMS_DEVICE_ID NOT NULL CHAR(32)

 CEN_CENTER_ID CHAR(32)

 DEVICE_STATE_CODE NOT NULL NUMBER(3)

 BEACON_STATE NOT NULL NUMBER(1)

 PIXEL_TEST NOT NULL NUMBER(1)

 DMS_INITIALIZED NOT NULL NUMBER(1)

 COMM_STATUS NOT NULL NUMBER(1)

 LAST_CONTACT_TIME DATE

 SHORT_ERROR_STATUS NOT NULL NUMBER(5)

 STATUS_CHANGE_TIME DATE

 STATUS_LOG_DATE DATE

 LAST_ATTEMPTED_POLL_TIME DATE

 CURRENT_MESSAGE_TEXT VARCHAR2(1024)

 TRAV_MSG_ID CHAR(32)

 TRAV_MSG_STATE NUMBER

 TRAV_MSG_REASON VARCHAR2(4000)

+CONTROL_MODE NUMBER(1)

+MESSAGE_SOURCE NUMBER(2)

+DETECTED_SIZE_HORIZONTAL_PIXELS NUMBER(4)

+DETECTED_SIZE_VERTICAL_PIXELS NUMBER(4)

2.4.1.1.2.3.2 Tables Modified for Watchdog in CHART R4 Live Database

ALERT (Existing)
 ALERT_ID NOT NULL CHAR(32)

 DESCRIPTION NOT NULL VARCHAR2(1024)

 ALERT_TYPE NOT NULL NUMBER(3)

 ALERT_STATE NOT NULL NUMBER(1)

 CREATION_TIME NOT NULL DATE

 RESPONSIBLE_USER VARCHAR2(32)

 RESPONSIBLE_CENTER_ID CHAR(32)

 RESPONSIBLE_CENTER_NAME VARCHAR2(16)

 NEXT_ACTION_TIME DATE

 LAST_STATE_CHANGE_TIME NOT NULL DATE

 PREV_ESCALATION_RESET_TIME DATE

 DETAIL_ID1 CHAR(32)

 DETAIL_ID2 CHAR(32)

*DETAIL_TEXT1 VARCHAR2(33)

 OFFLINE_INDICATOR NUMBER(1)

 DB_CODE VARCHAR2(1)

 DETAIL_TEXT2 VARCHAR2(20)

 DETAIL_TEXT3 VARCHAR2(20)
2.4.1.1.2.4 PL/SQL Module Definition and Database Trigger Reports

There are no new PL/SQL modules for CHART R4.
2.4.1.1.2.5 Database Size Estimate - provides size estimate of current design

The NTCIP v2 DMS feature adds a handful of new columns to the DMS and DMS status tables, but will have no noticeable impact on database size. Also the Watchdog feature requires the DETAIL_TEXT1 column of the ALERT table to be increased from VARCHAR(20) to VARCHAR(33). This could potentially increase the size of the database by 13 bytes per Alert, but this will have no noticeable impact on database size, either.
2.4.1.1.2.6 Data Distribution

Release 4 does not impact data distribution in CHART.
2.4.1.1.2.7 Database Replication

Release 4 does not affect any replicated tables in the database.
2.4.1.1.2.8 Archival Migration

Release 4 has the same effect on the same tables in the archive database as in live databases, but this does not affect any archive processing.
2.4.1.1.2.9 Database Fail-Over Strategy

The SOC is the master database site and the remaining CHART server sites host a snapshot replication database. Should the master database be down or unavailable for an extended period, one of the snapshot databases could be converted to a master database site.
2.4.1.1.2.10 Reports

Aside from minor updates to any reports that would log data from the tables listed above, CHART R4 imposes no requirements for any changes to the reporting tool.
2.4.1.2 CHART Flat Files

The following describes the use of flat files in CHART.
2.4.1.2.1 Service Registration Files

Each of the CHART background service directories, the JacORB Trader directory, and JacORB Event Service directories has a set of files used to install and uninstall the particular service into the Windows services list. When the service is thus installed it can be controlled through the Windows Services Applet. The files to install and uninstall are *ServiceReg.cmd and *RemoveService.cmd, where “*” is the name of the service, for instance, HAR or DMS, or HAREvent or DMSEvent (for JacORB event services running for specific CHART services) or Event (for the generic event service used by the GUI and FMS processes) or Trading for the JacOrb Trader. These are created at installation time. The registration file is run at installation time, and then these files are not used again. They are merely stored in the unlikely event that they may be needed to re-register the service.

2.4.1.2.2 Service Property Files

Each of the CHART background service directories, the JacORB Trader directory, and JacORB Event Service directories has one properties file used to set runtime parameters used to control execution of the service. These parameters may include location of other services, the database, timeout parameters, retry parameters, etc. These file is named *.props, where “*” is the full name of the service, for instance, HARService, or HAREventService or TradingService. These are created at installation time with default values appropriate for most installations. Installation procedures may call for the person performing the installation to edit some files to make specific updates immediately following installation. These are user-editable ASCII files and parameters are stored in a Module.ParameterName=value format, with thorough in-line documentation of each parameter, including defaults and reasonable acceptable ranges and meanings where necessary. Typically only software engineers may occasionally change certain runtime parameters to fine tune performance characteristics.

2.4.1.2.3 GUI Property Files

The CHART GUI has two properties files used to specify runtime parameters. These parameters include location of other services, the database, timeout parameters, retry parameters, etc. The primarily file is named MainServlet.props. Additional parameters are stored in the velocity.props and RequestHandler.props files. These files are stored in the chartlite directory under the WebApps directory in the Apache Tomcat installation area. These are created at installation time with default values appropriate for most installations. Installation procedures typically call for the person performing the installation to edit some files to make specific updates immediately following installation. These are user-editable ASCII files and parameters are stored in a Module.ParameterName=value format, with thorough in-line documentation of each parameter, including defaults and reasonable acceptable ranges and meanings where necessary. Typically only software engineers may occasionally change certain runtime parameters to fine tune performance characteristics.

2.4.1.2.4 Arbitration Queue Storage Files

Each CHART DMS and HAR contains an Arbitration Queue which is used to store and manage the messages requested to be on the online device as part of a response to ongoing traffic events. This data is stored in a file in a directory called MessageQueuePersist/, which is a subdirectory of the DMSService and HARService directories. These are binary files, and are not user-editable or user-viewable from Windows. The files are named by the 32-digit hexadecimal CHART ID plus the extension “.per”. Arbitration Queues are not generally maintained from one version of CHART to the next. Whenever the Java version changes, they cannot be maintained, as the old files will not be readable using the new version of Java.

2.4.1.2.5 Device Logs

DMSs, TSSs, and HARs have a capability to store communications transactions between CHART software and the physical devices over the telephone lines. This data can be used for debugging communications issues or for validating successful communications operations. The device logs can be toggled on or off by editing device properties from the appropriate device details screens. Typically all device communications logging is enabled for all devices. These logs are automatically deleted by the system after a set period of time, so they do not accumulate infinitely. They are stored in the DeviceLogs/ or DebugLogs/ subdirectories within the service install directory, and are named by device name and date, plus a “.txt” extension. These logs are typically read only by software engineering personnel.

2.4.1.2.6 Traffic Sensor Raw Data Logs

TSSs are polled periodically (typically every five minutes) for traffic volume, speed, and occupancy data. The statistics gathered are stored in data files in the TSSService/RawData/ directory. From here these files are permanently archived for historical purposes. These files are stored in a human-readable, comma-delimited, ASCII format, although they are not designed for convenient routine interpretation directly by users.

2.4.1.2.7 Service Process Logs

All CHART services write to a process log, used to provide a historical record of activity undertaken by the services. These logs are occasionally referenced by software engineering personnel to diagnose a problem or reconstruct a sequence of events leading to a particular anomalous situation. These logs are automatically deleted by the system after a set period of time defined by the service’s properties file, so they do not accumulate infinitely. These files are stored in the individual service directories and are named by the service name and date, plus a “.txt” extension. These logs are typically read only by software engineering personnel.

2.4.1.2.8 Service Error Logs

All CHART services write to an error log, used to provide detail on certain errors encountered by the services. Most messages, including most errors, are captured by the CHART software and written to the process logs, but certain messages (typically produced by the Java Virtual Machine itself, by COTS, or DLLs) cannot be captured by CHART Software and instead are captured in these "catch-all" logs. Errors stored in these logs are typically problems resulting from a bad installation; once the system is up and running, errors rarely appear in these error logs. Debugging information from the JacORB COTS, which is not usually indicative of errors, can routinely be found in these error logs, as well. These log files can be reviewed by software engineering personnel to diagnose an installation problem or other type of problem. These logs are automatically deleted by the system after a set period of time defined by the service's properties file, so they do not accumulate infinitely. These files are stored in the individual service directories and are named by the service name and date, plus an ".err" extension. These logs are typically read only by software engineering personnel.

2.4.1.2.9 GUI Process Logs

Like the CHART background services, the CHART GUI service also writes to a process log file, used to provide a historical record of activity undertaken by the process. These GUI process logs are occasionally referenced by software engineering personnel to diagnose a problem or reconstruct a sequence of events leading to a particular anomalous situation. These logs are automatically deleted by the system after a set period of time defined by the GUI service’s properties file, so they do not accumulate infinitely. These files are stored in the chartlite/LogFiles/ directory under the WebApps/ directory in the Apache Tomcat installation area. They are named by the service name (“chartlite”) and date, plus a “.txt” extension. These logs are typically read only by software engineering personnel. Additional log files written by the Apache Tomcat system itself are stored in the log/ directory in the Apache Tomcat installation area.

2.4.1.2.10 FMS Port Configuration Files

The CHART Communications Services read a Port Configuration file, typically named PortConfig.xml, upon startup, which indicates which ports are to be used by the service and how they are to be initialized. A Port Configuration Utility is provided which allows for addition, removal of ports and editing of initialization parameters. As indicated by the extension, these files are in XML format. This means these files are hand-editable, although the Port Configuration Utility allows for safer, more controlled editing. The Port Configuration files are typically modified only by software engineers or telecommunications engineers.

2.4.1.2.11 Watchdog Configuration Files

New for CHART R4, each watchdog service has a configuration file that specifies monitoring settings for each service the watchdog will monitor. The location of the configuration file is specified in the Watchdog’s Property File. However, the file is typically located in the same directory as the Property File. The Watchdog configuration file is an XML file that can be edited with a text editor and includes the following types of settings for each service:

· Auto Restart Settings: The settings determine if the Watchdog will automatically restart the service when failed, and whether an alert and/or notification is sent when this occurs. Other related settings specify how long the service must be failed before a restart is performed and which operations center / notification group is to receive the alert / notification.

· Failure alert and notification settings: These settings specify if and when an alert and/or notification is to be sent when the Watchdog detects a service has failed.

· Operating system shell commands: These settings include shell commands used to stop, start, restart, or automatically restart the service.
2.4.1.2.12 NTCIP DMS Compliance Tester Configuration Files

The NTCIP DMS Compliance Tester persists data in several Java properties files, however none of these properties files are required to run the application. The configuration files fall into two categories: operational configuration settings, and saved window size/location.

Operational Configuration Settings

The operational configuration settings include communications settings, settings regarding attributes of the sign being tested, and settings used when performing a set message test. When the application is started, it will use default configuration values if the associated properties file does not exist or does not contain a specific setting. The user can view the configuration settings via a menu that exists within the application’s GUI. The user can make changes to the settings and choose to save their changes. When this occurs, the settings are stored into a properties file on the user’s PC in the directory where the NTCIP DMS Compliance Tester is running. The following files are used:

	SavedCommSettings.props
	Communications settings, such as whether to use TCP/IP or RS232, and settings associated with each of those communications methods.

	SavedSetMessageSettings.props
	Set message settings, such as the message text, and whether the message text is MULTI or plain text.

	SavedSignSettings.props
	Sign settings, such as the physical size of the sign, the font to use as a default, etc.

Window Size/Location Settings

The window size and location settings are used to store the size and location of each window so it will appear with the same size and at the same location as when the user last viewed the window. There are 5 windows included in the NTCIP DMS Compliance Tester, and a .props file will exist for each one. These files are not required; a default window size and location is used if the associated file is not found. The tester saves the window size and location each time a window is viewed and then closed. Following are the files used:

	SavedCommSettingsDlgPos.props
	The size and location of the dialog used to allow the user to view/edit the communications settings.

	SavedHelpDlgPos.props
	The size and location of the dialog used to allow the user to view help documentation.

	SavedMainWindowPos.props
	The size and location of the application’s main window.

	SavedSetMessageDlgPos.props
	The size and location of the dialog used to specify the message text for the set message test.

	SavedSignSettingsDlgPos.props
	The size and location of the dialog used to allow the user to view/edit the sign settings.

2.4.1.2.13 NTCIP DMS Compliance Tester Help File

The NTCIP Compliance Tester contains a single help document, stored in the file Help.html in the directory where the software is installed. The help file is a text file containing HTML and can be updated independently of the NTCIP DMS Compliance Tester software.

2.4.1.2.14 NTCIP DMS Compliance Tester Process Logs

The NTCIP DMS Compliance Tester logs messages to a process log, similar to the CHART services. The process logs will exist in the directory where the NTCIP DMS Compliance Tester is installed, and be named with the following format: ComplianceTesterYYMMDD.txt, where YY is the current year, MM is the current month, and DD is the current day of the month. New entries are appended to the current log file, and a new log file is automatically created for each day when at least one message is logged. All messages are time stamped. All messages displayed within the compliance tester main window will also appear in the log file (but not vice versa).
2.4.2 Database Design

The CHART database design is described below. The design is based on the CHART Business Area Architecture, and the CHART System Requirements.

The database design consists of these major areas:

· User/system management

· Device configuration

· Device status

· Traffic event response planning

· Events and logging

· Alerts

· Notification

· Schedules

· System parameters

· Travel Routes

· Replication

· Archiving

All device configuration data is maintained by the CHART database and is supplied to the FMS as part of a service request. However, configuration data for devices related to video distribution is not supplied to the FMS, since CCTV camera communications do not use the FMS.

2.4.2.1 User/System Management

The user/system management entities consist of the complete suite of information to tie together the users, roles, organizations, and functional rights with the center's identification. The user/system management entities are considered static data in the sense that the majority of the data will be pre-loaded either through a GUI or via SQL loads.

2.4.2.2 Device Configuration

The DMS, HAR, SHAZAM, TSS, Camera, Monitor, and other CCTV video entities include data that define the configuration of the resources for devices. Each device or detector is associated with an organization via a foreign key. The organization is responsible for all devices and for each model type to which it is related.

All of the configuration data is considered static data. It is generally changeable, but changes infrequently.

2.4.2.3 Device Status

The DMS, HAR, SHAZAM, TSS, Camera, and Monitor entities include data that define the status or state of the devices. Some status information (e.g. last poll time, last polled detector speed data) changes very frequently. Other status information (e.g., the message on a DMS) changes less frequently.

2.4.2.4 Traffic Event Response Planning

The planning entity consists of all of the data necessary for an operator to execute a response plan from within an open traffic event. Response plans include preselected HAR and DMS devices with messages related to a well known event such as recurring congestion at a particular location.

This data is considered to be fairly static, although libraries and plans are easily updated. These data set up the plan scenario for a given event. It is used manually by operators to refine the plan or create their own.

The dictionary entity data assists the operator by checking spelling and checking for banned words when creating messages for the message library, for DMS messages, and for HAR text message clips, and by doing pronunciation substitution prior to text to speech for HAR text message clips.
2.4.2.4.1 Events and Logging

The events entity includes all informational data related to traffic incidents. It also includes any devices that are part of the response to an event, such as DMSs and HARs. Also included are various log data that are described in more detail below.

The logs that are maintained are listed below:

· Communications Log

· Event Log

· Operations Log

The Communications Log entity documents operator communications, and may or may not be tied to a specific traffic event. The event log contains operator and system generated entries specific to actions associated with a particular traffic event. The Operations Log entity stores all system generated events, including device usage and component failures.

2.4.2.5 Alerts

The alerts entity includes all informational data related to alerts. Alerts are dynamic data. Most alerts are created by the system automatically, although manually generated generic alerts are also supported. Alert status and history data can be updated frequently. All alert data is archived.

2.4.2.6 Notification

The notification entity includes all informational data related to notifications. Notifications are dynamic data. Notification status data are updated frequently.

2.4.2.7 Schedules

The schedules entity includes all informational data related to schedules. Schedules are fixed data. Users add schedules to the system and delete them when they are done. Schedules do not have dynamic status or history data.

2.4.2.8 System Parameters

The System Profile parameters are used for general CHART system operations. Examples of system parameters include:

· Days to purge operation log

· Which event types may be combined

· Which event types are comparable for event location duplication

· HAR date stamp format

· Alert system configuration parameters

· General GUI parameters

2.4.2.9 Travel Routes

The travel routes entity includes all informational data related to travel routes, used to provide travel time and/or toll rate data for use in traveler information messages. Travel routes are fixed data. Administrators add travel routes to the system in preparation for displaying travel times or toll rates on DMSs. Travel routes do not have dynamic status or history data.

2.4.2.10 Replication

The database will provide replication of all entities required for a CHART server site to run independent of any other CHART server site, as might occur with a network outage between sites. This includes data related to CHART GUI (profile, folders), user management (including external client IDs and public keys), and dictionary data. The data related to logging and resources is replicated as well.

Device configuration data is not replicated since each device is homed to only one server. Other CHART servers access that device configuration through the appropriate CORBA Trading Service. Similarly, traffic event information, alerts information, notification information, and schedule information are homed to only one server and therefore not replicated.

2.4.2.11 Archiving

The CHART Archive database stores data from the CHART operational system as part of a permanent archive. The CHART Archive database design is a copy of the CHART operational system for those tables containing system, alert, traveler information messages and their underlying data, and event log information. In addition, the CHART Archive database stores detector data. This data is stored as time annotated averages at selected frequencies. See Figure 2-6 which includes the ERD for the Archive database.
3 Key Design Concepts

3.1 NTCIP v2 DMS

As part of the R4 development effort CHART R4 will be tested with as many brands/models of NTCIP DMS as possible, version 1 and version 2. It turns out that all features added to support NTCIP exist for NTCIP version 1 and well as NTCIP version 2. This means that there need be no flag or indicator to distinguish NTCIP version 1 DMSs from NTCIP version 2 DMSs in R4. There will be a pixel test and an extended status added for NTCIP DMS. In addition, the CHART NTCIP Compliance Tester will be updated to exercise the new functionality added for R4.
3.2 Watchdog

The Watchdog feature includes a new CHART service that monitors other services for availability. A Watchdog service is installed on each CHART server and is configured to periodically query each of the other CHART services on that server to determine if the service is available and to collect runtime statistics from the service. A second Watchdog service is installed on each server to allow the primary Watchdog service to also be monitored. The Watchdog service can be configured to automatically restart a service that has failed, and can also be configured to send alerts and/or notifications. The GUI allows the status of each service, as determined by the watchdog monitoring the service, to be viewed in detail. Details about Watchdog services can also be viewed in the GUI, such as the list of services they are monitoring and the monitoring configuration for each. The GUI also allows commands to be issued to a watchdog to have it stop, start, or restart a service which it monitors.

3.3 CHART NTCIP Compliance Tester

The NTCIP DMS Compliance Tester is a stand alone application that allows sign vendors to test if their NTCIP compliant sign is compatible with the CHART system. This tester application makes use of actual CHART application code to ensure that all low level interactions between the tester application and an NTCIP compliant DMS are identical to the interactions made between the CHART system and an NTCIP compliant DMS. The NTCIP DMS Compliance Tester utilizes a graphical user interface to allow the user to configure the tester for communications with the sign being tested, and to allow the user to execute tests, see the test results, and optionally save the test results. Note that this tester is not in any way connected to the CHART system – the tester interacts directly with the DMS being tested.

3.4 Error Processing

In general, CHART traps conditions at both the GUI and at the server. User errors that are trapped by the GUI are reported immediately back to the user. The GUI will also report communications problems with the server back to the user. The server may also trap user errors and those messages will be written to a server log file and returned back to the GUI for display to the user. Additionally, server errors due to network errors or internal server problems will be written to log files and returned back to the GUI.

The error processing specific to the NTCIP DMS Compliance Tester includes logging all detected errors to the application’s log file.

3.5 Packaging

This software design is broken into packages of related classes. The table below shows each of the CHART packages along with a description of each. There are nnew packages for the CHART R4 NTCIP Compliance Tester
Table 3‑1. Package Descriptions
	Package Name
	Package Description

	ActionUtility
	This package contains code used by the GUI to invoke actions from alerts generated by the Schedule Module. This package is separate from the Schedule Module itself because it is currently used by the GUI, but may be used by the Schedule Module itself in future releases.

	AlertModule
	This package contains an installable service application module that is responsible for handling Alerts in CHART. This module will change for the Watchdog feature to support the new Service alert type.

	AudioClipModule
	This package contains classes used during the creation and storage of HAR audio clips.

	AudioCommon
	This contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART AudioClipModule and other applications such as the CHART GUI.

	Camera Control Module
	This package contains an installable service application module that serves the Camera Factory, Camera and related objects as specified in the system interfaces.

	chartlite
	This package contains all of the classes that comprise the CHART GUI. This package is changed for the Watchdog feature to support the display of additional information as provided by Watchdog services and to allow the user to stop, start, and restart services remotely.

	CHART2Service
	This package contains a class that serves as a generic service application. The Watchdog feature includes changes in this package to allow services to better report their runtime statistics.

	CommandProcessorModule
	This package contains an installable service application module that serves the CommandProcessorFactory, CommandProcessor and related objects as specified in the system interfaces.

	CommLogModule
	This package contains classes that are used to write the CommunicationsLog.

	CORBAUtilities
	This package contains classes included in the third party ORB product used for implementation.

	DataModel
	This package contains classes and methods that allow for storage, efficient lookup, and updating of object data.

	DeviceManagement
	This package contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART ArbitrationQueue and other applications such as the CHART GUI.

	DeviceUtility
	This package contains various utility classes used by CHART devices. The NTCIP DMS Compliance Tester includes minor changes to several classes in this package to allow the classes to be used outside of this package. (Specifically, the DataPortUtility and TCPIPPort classes need public constructors)

	DictionaryManagement
	This package contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART Dictionary and other applications such as the CHART GUI.

	DictionaryModule
	This package contains an installable service application module that serves Dictionary and related objects as specified in the system interfaces.

	DMSControl
	This package serves the DMS Configuration and Status Factory, DMS Configuration and Status and related objects as specified in the system interfaces. This package will change for R4 to support new NTCIP DMS configuration settings, status values, and operations.

	DMSControlModule
	This package contains an installable service application module that serves the DMS Factory, DMS and related objects as specified in the system interfaces. This package will change for R4 to support new NTCIP DMS configuration settings, status values, and operations.

	DMSProtocols
	This package contains classes that encapsulate the functionality used to communicate with the various models of DMSs

	DMSUtility
	This package contains DMS related utility classes used by the server.

	DMSImportModule
	This package contains an installable service application module that is used to import external DMS data into CHART.

	EventImportModule
	This package contains an installable service application module that is used to import external traffic event data into CHART.

	ExternalInterfaceModule
	This package implements connections to external systems. Currently RITIS is the only external system connecting to CHART.

	EORS
	This package contains classes related to EORS.

	EORSModule
	This package contains an installable service application module that serves EORS and related objects as specified in the system interfaces.

	FieldCommunicationsModule
	This package contains an installable service application module that serves Port manager and related objects used to provide access to communications ports on the machine where this module is run.

This package includes a minor change for the NTCIP DMS Compliance Tester to allow the FieldCommunicationsProperties class to be used from within the NTCIPDMSComplianceTester package (the class needs to be made public).

	GeoAreaModule
	This package contains an installable service application used for managing and providing access to Geographical Areas configured in CHART.

	HAR Control
	This package contains HAR utility and other HAR related classes.

	HARControlModule
	This package contains an installable service application module that serves the HAR Factory, HAR and related objects as specified in the system interfaces.

	HARProtocols
	This package contains classes that encapsulate the functionality used to communicate with the various models of HARs.

	LogCommon
	This package contains objects related to the commLog.

	MessageLibaryModule
	This package contains an installable service application module that serves the MessageLibrary Factory, MessageLibrary and related objects as specified in the system interfaces.

	MessageTemplateModule
	This package contains an installable service application module that serves the MessageTemplate Factory, and related objects as specified in the system interfaces.

	MonitorControlModule
	This package contains an installable service application module that serves the Monitor Factory, Monitor and related objects as specified in the system interfaces.

	NativeUtility
	This package contains utility classes used for calling C++ code.

	Notification Module
	This package contains an installable service application module that provides notification services for CHART.

	NTCIPDMSComplianceTester
	This package contains the NTCIP DMS Compliance Tester classes. This is a stand alone application that allows sign vendors to test if their NTCIP compliant DMS will work properly with the CHART system.

	PlanModule
	This package contains an installable service application module that serves the Plan Factory, Plan and related objects as specified in the system interfaces.

	ResourcesModule
	This package contains an installable service application module that serves the OperationsCenter Factory, OperationsCenter and related objects as specified in the system interfaces.

	RoadwayLocationLookupModule
	This package contains an installable service application module that provides interfaces for querying the location data contained on the CHART Mapping database.

	RouterControlModule
	This package contains an installable service application module that serves the Router Factory, Router and related objects as specified in the system interfaces.

	ScheduleModule
	This package contains an installable service application module that serves the Schedule Factory and Schedule objects as specified in the system interfaces.

	SHAZAMControlModule
	This package contains an installable service application module that serves the SHAZAM Factory, SHAZAM and related objects as specified in the system interfaces.

	SHAZAMProtocols
	This package contains classes needed for communication to a specific model SHAZAM.

	SHAZAMUtility
	This package contains SHAZAM related utility.

	TollRateImport servlet
	The TollRateImport servlet provides web service to allow data providers (Vector) to import toll rates into Chart.

	TrafficEventMangement
	This package contains classes related to TrafficEvent objects.

	TrafficEventModule
	This package contains an installable service application module that serves the TrafficEvent Factory, TrafficEvent and related objects as specified in the system interfaces.

	TravelRouteModule
	This package contains an installable service application module that serves the Travel Route Factory, and related objects as specified in the system interfaces.

	TravelTimeImportModule
	This package contains an installable service application module that serves the INRIX Import related objects as specified in the system interfaces

	TSSImportModule
	This package contains an installable service application module that is used to import external TSS data into CHART

	TSSMangementModule
	This package contains an installable service application module that serves the RTMS Factory, RTMS and related objects as specified in the system interfaces.

	TSSUtility
	This package contains TSS related utility classes.

	TTSControlModule
	This package contains an installable service application module that is used to run the TTS server.

	Utility
	This package contains various utility classes used throughout CHART. The Corba utility class is changed for the Watchdog feature to allow the Event Service to be monitored by the Watchdog service.

	VideoSwitchControlModule
	This package contains an installable service application module that serves the VideoSwitch Factory, VideoSwitch and related objects as specified in the system interfaces.

	VideoUtility
	This package contains Video related utility classes.

	WatchdogService
	This package contains code for the Watchdog service, including the Watchdog module that is deployed within the Watchdog service.

	webservices
	This package contains code for the web services base and web services that utilize the base. The Watchdog feature includes changes to the base to allow web services to be monitored by the Watchdog service.

3.6 Assumptions and Constraints

1. Constraint: The Watchdog cannot monitor the trading service because it is a JacORB specific service and does not implement the required CHART2 service interface.
2. Constraint: The Watchdog cannot monitor GUI services. The GUI would require modifications to allow it to be monitored, and it was decided (jointly with the project team and customer) that GUI monitoring is not necessary due to the fact that users are inherently monitoring GUIs via system use.
3. Testing for NTCIP DMS prcoessing will primarily be done using simulators. It is assumed that SHA can make available for testing the Radio Shop FP10000 (FP10K) DMS in NTCIP mode, which is understood to be NTCIP version2. It is also assumed that SHA will coordinate with MDTA to make the latest MdTA Daktronics signs (version 1) available for testing. SHA will make available MAA Daktronics NTCIP signs (version 1), plus any others which are or may become available. The more signs that can be tested the more confidence can be gained in the R4 update prior to deployment. If actual NTCIP DMSs (version 2 and version1) are made available by SHA prior to the start of integration test it will be used for integration testing. If an actual NTCIP DMS is not provided for testing during integration test, testing with live NTCIP DMSs should be performed instead. Any brands and models of NTCIP DMS which cannot be made available for testing will not be exercised after R4 is deployed, and any post deployment changes will be billed under a work order and will not fall under warranty. Furthermore, it shall be noted that different manufacturers may implement NTCIP features differently, even in some cases while still adhering to or claiming to adhere to the NTCIP specifications. If any model of NTCIP v1 or v2 DMS cannot be tested prior to R4 deployment, and any post deployment changes will be billed under a work order and will not fall under warranty.
4. The NTCIP DMS Compliance Tester is a tool provided for use by sign vendors to determine if it is likely that their sign will work properly within the CHART system. The fact that a DMS works with the NTCIP DMS Compliance Tester does not guarantee that it will work without issues in the CHART system, as the compliance tester is not able to simulate all uses of a DMS as they occur within the CHART system.
4 Use Cases

The use case diagrams depict new functionality for R4 features. The use case diagrams for the NTCIP v2 DMS exist in the Release 4 area. The use case diagrams for the Watchdog feature exist in the Tau design tool in the R3B4-Aug09 area. The sections below indicate the titles of the use case diagrams that apply to these R4 features.
4.1 R4HighLevel (Use Case Diagram)

This use case diagrams shows use cases related to new R4 features and enhancements to existing features at a high level.

[image: image15.emf]Manage Services

Administrator

Operator

Configure

Devices

UPDATED FOR R4.

See R4ManageServices UCD

for details.

Manage

Devices

Create NTCIP DMS

Configure NTCIP DMS

View Device

Details

Manage NTCIP DMS

Manage Alerts

And Notifications

UPDATED FOR R4.

See R4_NTCIP_DMS_Uses UCD

for details.

UPDATED FOR R4.

See R4ManageAlertsAndNotifications UCD

for details.

UPDATED FOR R4.

See R4_NTCIP_DMS_Uses UCD

for details.

«include»«include»

«include»«include»

«include»«include»

Figure 4‑1. R4HighLevel (Use Case Diagram)

4.1.1 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

4.1.2 Configure Devices (Use Case)

An administrator (operator with the correct functional rights) may configure devices. This includes the devices themselves and all associated supporting configuration information.

4.1.3 Configure NTCIP DMS (Use Case)

The system shall allow a user with appropriate rights to configure a NTCIP DMS. This feature existed previously. It already set default font and line spacing and is being enhanced in this release to include the setting of the default intercharacter spacing and page justification.

4.1.4 Create NTCIP DMS (Use Case)

The system shall provide the capability to add a new DMS of type “NTCIP” which communicates via the NTCIP DMS protocol. NTCIP version 1 and NTCIP version 2 are supported by CHART.
4.1.5 Manage Alerts And Notifications (Use Case)

A user with proper functional rights can view and respond to alerts generated by the system. The system will monitor conditions and send out alerts and/or notifications. For R4 one new alert type is being added: Service Alerts. The conditions that trigger these alerts can also cause a notification to be sent independent of the alert. Details are shown in the Release 4 Manage Alerts And Notifications Use Case Diagram.

4.1.6 Manage Devices (Use Case)

An operator with the correct functional rights may perform basic operations on CHART devices including DMSs, HARs, Video related devices, TSSs, and SHAZAMs. For R4, NTCIP DMS processing will be updated. See the R4_NTCIP_DMS_Uses UCD for details.

4.1.7 Manage NTCIP DMS (Use Case)

This use case covers all the things operators can do with NTCIP DMSs, updated with Release 4.

4.1.8 Manage Services (Use Case)

This Use Case covers activities involved in managing CHART services, employing the Watchdog added in R4.

4.1.9 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.1.10 View Device Details (Use Case)

The system allows users to view details pertaining to devices, including NTCIP DMSs. See the R4_NTCIP_DMS_Uses UCD for details.

4.2 R4_NTCIP_DMS_Uses (Use Case Diagram)

This diagram illustrates the use cases included in the R4 NTCIP dms update.

[image: image16.emf]Administrator

Create NTCIP DMS

Operator

NEW FOR R4

Configure NTCIP DMS

View NTCIP DMS

Configuration

Poll NTCIP Extended

Status

View NTCIP

Extended Status

MODIFIED FOR R4

added:

Configure Default Inter-Character Spacing

Configure Default Page Justifiction

View NTCIP Status

MODIFIED FOR R4

added:

View Default Inter-Character Spacing

View Default Page Justifiction

Perform NTCIP

Pixel Test

MODIFIED FOR R4

added:

View Control Mode

View Message Source

View Detected Pixel Data

View NTCIP V2 Short Error Status

Poll DMS

Set NTCIP Control

Mode to Central

MODIFIED FOR R4

added:

get Control Mode

get NTCIP V2 Short Error Status

get Detected Pixel Data

get Message Source

MODIFIED FOR R4

added:

set default Intercharacter Spacing

set default Page Justification

Set Message

MODIFIED FOR R4

added:

View Control Mode

View Message Source

View Connected Module Info

System

includesincludes

Figure 4‑2. R4_NTCIP_DMS_Uses (Use Case Diagram)
4.2.1 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

4.2.2 Configure NTCIP DMS (Use Case)

The system shall allow a user with appropriate rights to configure a NTCIP DMS. This feature existed previously. It already set default font and line spacing and is being enhanced in this release to include the setting of the default intercharacter spacing and page justification.

4.2.3 Create NTCIP DMS (Use Case)

The system shall provide the capability to add a new DMS of type “NTCIP” which communicates via the NTCIP DMS protocol. NTCIP version 1 and NTCIP version 2 are supported by CHART.

4.2.4 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.2.5 Perform NTCIP Pixel Test (Use Case)

The system shall allow a suitably privileged user to execute a pixel test for a NTCIP DMS only if the DMS is in maintenance mode.

4.2.6 Poll DMS (Use Case)

The system shall allow a user to poll the DMS to get the status of the DMS. The system will periodically poll the DMS as indicated by a system configuration value. This release adds NTCIP control mode status, v2 short error statuses, detected sign size (in pixels), and message source status to the poll.

4.2.7 Poll NTCIP Extended Status (Use Case)

The system shall allow a suitably privileged user to poll a NTCIP DMS for extended status.

4.2.8 Set Message (Use Case)

The system shall allow a suitably privileged user to set a message on a DMS. The message on a DMS can be set when the DMS is online or in maintenance mode. When the DMS is online, the message is set by the DMS's arbitration queue. This queue sets the message of the DMS to be the message that is on the queue that has the highest priority. When the DMS is in maintenance mode, an operator with proper functional rights can set the message on a DMS directly. This use case is being modified to automatically set the default intercharacter spacing and page justification when executing set message.

4.2.9 Set NTCIP Control Mode to Central (Use Case)

The system shall allow a suitably privileged user to set the control mode of an NTCIP DMS to central. The system automatically sets the control mode to central during a set message execution.

4.2.10 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.2.11 View NTCIP DMS Configuration (Use Case)

The system shall allow a user with appropriate rights to view configuration of a NTCIP compliant DMS. This feature existed previously. It already allows viewing default font and line spacing which is specific to NTCIP DMSs. It is being enhanced in this release to include the viewing of the default inter-character spacing and page justification.

4.2.12 View NTCIP Extended Status (Use Case)

The system shall allow an operator to view extended status information for a NTCIP DMS. The extended status information will consist of just the module component information of an NTCIP compliant DMS in the extended status, which will include the device type, make, model, and version of each DMS component module.

4.2.13 View NTCIP Status (Use Case)

The system shall show the current status for the DMS. The current status displayed for a NTCIP DMS shall include the Short Error Status of the DMS, which has new additional values in NTCIP version 2. The system shall display current message source, the current control mode, and the sign's size, as reported by the sign, height by width (H x W) in pixels, of an NTCIP DMS in the current status.
4.3 R4ManageServices (Use Case Diagram)

This diagram shows use cases related to monitoring and managing service. In R4, the system will automatically monitor services for availability and can optionally send alerts and notifications for services it detects to be failed. The system can also automatically restart failed services. R4 also adds the ability to stop, start, and restart services from the GUI.
[image: image17.emf]Restart Failed ServiceAdministratorSort ServicesShow or HideWatchdog ServicesPing All Watchdog'sMonitored ServicesManage ServiceSystemMonitor ServicesPoll ServicesMaintain Service StatusDetect Failed ServiceIssue Alert for Failed ServiceSend Notification for Failed ServiceView ServiceDetailsPing ServiceVia WatchdogStop ServiceView ServicesFilter ServicesView WatchdogService DetailsPing ServiceDirect from GUIStart ServiceRestart ServiceSet Service Log Level«extend»«extend»«extend»«extend»«extend»«extend»«extend»«extend»«extend»«extend»«include»«include»«include»«extend»«extend»«extend»

Figure 4‑3. R4ManageServices (Use Case Diagram)
4.3.1 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

4.3.2 Detect Failed Service (Use Case)

The system shall detect when a service is unavailable based on the results of a poll made from a watchdog to the service. The inability to successfully query a service indicates a failure. Services can also self report a failure condition as part of their status, however that is not currently done by any CHART services. After a service has been failed for a configurable amount of time, the system may take certain actions if so configured for that service. These actions include sending an alert, sending a notification, and attempting to restart the service.

4.3.3 Filter Services (Use Case)

The user shall be able to filter the list of services based on the value in one or more columns. The user shall be able to filter based on the following columns: service name net connection site current status status change time last poll time

4.3.4 Issue Alert for Failed Service (Use Case)

The system shall issue an alert after a service is detected to be failed for an amount of time configurable for that service. The alert will be sent to an operations center configured for the service, if any. If no operations center is configured for the service, and alert will not be sent, even if the failure time threshold is exceeded.

4.3.5 Maintain Service Status (Use Case)

The system shall maintain the current status of each monitored service based on the ability to poll the service for its status. The status of all monitored services will be made available for display in the GUI.

4.3.6 Manage Service (Use Case)

The system shall allow the user to perform management actions on each service whose ID is known to the GUI. (This includes services that the GUI discovered and was able to obtain initial data about the service and/or services monitored by a watchdog the GUI can access and the watchdog has contacted the service). The system will not prevent the user from attempting any management commands based on the service's status. For example, the user can issue the start command for a service that reports its status to be OK. If the service is truely already running, the watchdog's attempt to start it will fail, which is OK. But if for some reason the service showed OK and the service was actually not running (maybe the OK status was obtained a few minutes ago) we don't want to prevent the administrator from doing what they want to do.

4.3.7 Monitor Services (Use Case)

The system shall monitor the availability of CHART services. The services to be monitored must implement a special CORBA interface in order to be monitored by the system. The actual services to be monitored will be configurable. Configuration properties will also be available (via a configuration file) on a per service basis for each service that is to be monitored. The following settings will be configurable per service: failure alert threshold failure alert op center failure alerts enabled/disabled failure notification threshold failure notification group failure notifications enabled/disabled automatic restart threshold automatic restart enabled/disabled automatic restart commands automatic restart alerts enabled/disabled automatic restart alerts op center automatic restart notifications enabled/disabled automatic restart notifications group user initiated start service commands user initiated stop service commands user initiated restart service commands

Two monitoring agents, known as watchdogs, will exist on each CHART service. The first watchdog will monitor the other CHART services and the 2nd watchdog. The 2nd watchdog will monitor only the first watchdog. The monitoring process consists of periodically polling each monitored service to obtain its status and service information, maintaining the status so it can be made available to users (via the GUI), and detecting failures and optionally performing an action based on the amount of time a service has been failed.

4.3.8 Ping All Watchdog's Monitored Services (Use Case)

The system shall allow the user to send a command to a watchdog that causes it to ping all of the services it is monitoring.

4.3.9 Ping Service Direct from GUI (Use Case)

The system shall allow the user to issue a ping from the GUI (servlet) directly to a service. This bypasses the normal pings being done by the watchdog that monitors the service, but allows the administrator to check if the service is accessible to the GUI. Pinging in this manner will not alter the statistics shown for the service in the service list and the service details page. A suitable warning will be shown when this feature is used to indicate that fact.

4.3.10 Ping Service Via Watchdog (Use Case)

The system shall allow the user to initiate a ping of a service via the watchdog that is monitoring the service. This will only be available if the watchdog that monitors the service is known to the GUI. This manner of ping will ensure that the status shown for the service in the services page is up to date, as that information is provided by the watchdog.

4.3.11 Poll Services (Use Case)

The system shall periodically poll all monitored services to obtain their current status and service inforamtion. The period at which services are polled will be configurable per watchdog service.

4.3.12 Restart Failed Service (Use Case)

The system shall be capable of attempting to restart a service if the service is detected to have been failed for longer than the service restart timeout configured for the service. This feature can be enabled on a per service basis. When the system detects that the service has been failed for more than the restart failure timeout for the service, the system will execute one or more restart commands configured for the service. The ability to support multiple restart commands allows related services to be restarted. When multiple restart commands exist, a wait time will be associated with each restart command and the system will wait the specified amount of time before executing the next restart command. Additionally, a configuration value for each command will specify whether the system is to stop executing commands if the command fails or if the system should continue by executing the next command in the list. After the system performs a restart it will send a Service Alert (if so configured for the service that was restarted) and a notification (if so configured for the service that was restarted) to provide notice that the service was restarted. If the restart feature is not configured to be enabled for the service, the system will never attempt automatic restarts for the service.

4.3.13 Restart Service (Use Case)

The system shall allow the user to issue a command to restart a service. This command will only be available if the service is monitored by a watchdog and that watchdog is known to the GUI. The restart command is executed by the watchdog monitoring the service. A confirmation page will state if the command is successfully delivered to the watchdog. To determine if the restart is successful the user can watch the services list or the details page for the service.

4.3.14 Send Notification for Failed Service (Use Case)

The system shall be capable of sending a notification if a service is detected to be failed for longer than a specific time configured for the service. The notification will be sent to a notification group configured to receive notifications for the service, if any. If a notification group is not configured for the service, a notification will not be sent even if the service has been failed longer than the failure notification timeout for the service. The system will send only one notification when the failure timeout is first exceeded, and will not send another notification for the service unless the service transitions to the OK state, then back to the FAILURE state and remains failed again for the failure notification timeout.

4.3.15 Set Service Log Level (Use Case)

The system shall allow the log level for a service to be set. This feature will be available if the GUI has been able to contact the service during discovery, or if the service is monitored by a watchdog, the watchdog has been able to contact the service, and the GUI has been able to obtain the status of the service from the watchdog. The GUI will show the current log level if known. The GUI issues this command directly to the service (not via the watchdog) and therefore a confirmation page will state whether or not the command executed sucessfully.

4.3.16 Show or Hide Watchdog Services (Use Case)

The user shall be able to choose to show or hide watchdog services within the list of services. Making this choice will not affect any other filters currently in use or the current sort.

4.3.17 Sort Services (Use Case)

The user shall be able to sort the list of services. Secondary sorts will be hard coded by the system based on the primary sorts. All sorts can be done in ascending or descending order. The following sorts will be available: service name (with secondary sort on net connection site) net connection site (with secondary sort on service name, with watchdog service sorting above other services in an ascending sort, and below other services in a descending sort) currently detected status (with a secondary sort on net connection site and service name) last status change time (with a secondary sort on net connection site and service name) last poll time (with a secondary sort on net connection site and service name) last poll result (with a secondary sort on net connection site and service name) up time (with a secondary sort on net connection site and service name)

4.3.18 Start Service (Use Case)

The system shall allow the user to issue a command to start a service. This command will be available only if the service is monitored by a watchdog and that watchdog is known to the GUI. This command is issued via the watchdog that monitors the service. A confirmation message will indicate if the command is successfully delivered to the watchdog. To determine if the service starts, the user must monitor the service list or service details page and if the status changes from FAILED to OK for example, the start command has succeeded.

4.3.19 Stop Service (Use Case)

The system shall allow a user to initiate a stop command for a service if the service is monitored by a watchdog and the watchdog is known to the GUI. The actual stop command is executed by the watchdog that monitors the service. After issuing the command an initial confirmation will indicate if the request is successfully delivered to the watchdog. To determine if the service indeed stops, the user will need to monitor the service list or details page for the service (its status should turn to failed within a few minutes since the watchdog will not able to contact it if it is stopped).

4.3.20 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.3.21 View Service Details (Use Case)

The system shall allow the user to view the details for a service. The details shall include the data shown for the service within the service list, and other status and information as available. A link will be available to allow the details for the watchdog that monitors the service to be viewed (if any).

4.3.22 View Services (Use Case)

The user can view the CHART services that exist in the CHART system along with their currently detected status and other information. The following data will be shown for each service:

network connection site - the name of the site where the service is hosted. May be "Unknown" if the service was discovered in the trader but could not be contacted and is not monitored by an available watchdog service.

service name - the name of the service.

current detected status - may be "Unknown" if the service is not monitored by an accessible watchdog.

status change time - the time the current detected status last changed.

last poll time - the time an attempt was last made to contact to the service to obtain its status. May be "unknown" if the service is not monitored by an available watchdog.

last poll result - the result of the last attempt to contact the service, including the response time if applicable. May be Unknown if the service is not monitored by an available watchdog.

service up time - the amount of time the service has been running. May be "Unknown" if the service is not monitored by an available watchdog or the watchdog has been unable to contact it.

4.3.23 View Watchdog Service Details (Use Case)

The system shall allow the user to view the details for a watchdog service. In addition to the details shown for a normal service, the details shown for a watchdog service will include a list of the services it monitors with the ability to link to the details page for each.
4.4 Release4ManageAlertsAndNotifications (Use Case Diagram)

This diagram shows use cases related to monitoring and managing service. In Release 4, the system will automatically monitor services for availability and can optionally send alerts and notifications for services it detects to be failed. The system can also automatically restart failed services. Release 4 also adds the ability to stop, start, and restart services from the GUI.
[image: image18.emf]Resolve Alert

CreateTravel TimeAlertSendTravel TimeNotificationCreateToll RateAlertConfirm UniqueAlertSend Toll RateNotificationCreateExternal ConnectionAlert

Updated in Aug 09for new alert type.Send

External Connection

Notification

SystemSend

External Event

Notification

The functionality in theseoperator-initiated use casesalready exists for other alert types but will be extendedto include the new alert type:- Service AlertView AlertsView Alert DetailsOperatorAccept AlertUnaccept AlertDelay AlertNote - these use cases are used in otherdiagrams but are collected here to show themin one place.Comment On Alert

Undelay AlertClose AlertManually Escalate Alert

Create

External Event

Alert

Figure 4‑4. R4ManageAlertsAndNotifications (Use Case Diagram)

4.4.1 Accept Alert (Use Case)

A user with sufficient privileges may Accept an alert. Accepting an alert implies the user's AMG will handle the alert to closure. Accepting an alert stops any Escalation or Delay Timer, if running. To ensure alerts do not get accepted and forgotten, Accepting an alert starts the Accept timer for when the system should automatically revert the alert to the New state (See Configure Alert Timeouts). A typical duration of the Accept timer is expected to be less than a typical duration of the Delay timer.

4.4.2 Close Alert (Use Case)

A user with sufficient privileges may close an alert in the New, Accepted, or Delayed states. Closing an alert stops any Escalation, Delay, or Accept Timer and starts an Archive Timer. The alert remains visible to privileged viewers for the duration of the Archive Timer. After the Archive Timer expires the alert is removed from being seen by operators and only exists in the database archives.

4.4.3 Comment On Alert (Use Case)

A user with proper functional rights can add a comment to an alert. Previous comments cannot be changed or removed, nor can the text used to create the alert be changed, but any appropriate comment can be attached to the alert. The comment will be timestamped, attributed to the user, stored in the Alert History in chronological order with other history entries.

4.4.4 Confirm Unique Alert (Use Case)

The system ensures duplicate non-closed alerts are not seen by the users. A duplicate alert is defined as two alerts with the same alert type and the same discriminator based on the alert type. The alert discriminators are as follows: EventStillOpenAlert: same event; DuplicateEventAlert: same event; UnhandledResourceAlert: same resource; ManualAlert: same alert description; DeviceFailureAlert: same device; ExecuteScheduledActionsAlert: same list of actions; External Connection Alert: same external connection; External Event Alert: same external event; Travel Time Alert: same travel route. Toll Rate Alert: Same travel route, same alert description. Service Alert: Same service name, same net connection site.

4.4.5 Create External Connection Alert (Use Case)

The system will create an External Connection Alert if an external connection transitions to the "failed" state and remains there for an amount of time, as specified in the connection settings, if the alert is enabled in the connection settings. The system will create an External Connection Alert if an external connection transitions to the "warning" state and remains there for an amount of time, as specified in the connection settings, if the alert is enabled in the connection settings. (The time spent in the "failed" state contributes to the time counted for a warning).

4.4.6 Create External Event Alert (Use Case)

The system will create an External Event Alert for the operations center specified in the event import rule if an external traffic event matches an event import rule and the rule's settings indicate that an alert should be issued.

4.4.7 Create Toll Rate Alert (Use Case)

If toll rate alerts are enabled for a travel route, the system will issue an alert to the operations center specified in the travel route settings if the current toll rate for the travel route expires while there is a current (non-expired) toll rates document available.

4.4.8 Create Travel Time Alert (Use Case)

If travel time alerts are enabled for a travel route, the system will issue an alert to the operations center specified in the travel route settings when the travel time crosses the threshold specified in the travel route settings.

4.4.9 Delay Alert (Use Case)

A user with sufficient privileges may Delay an alert. The implication is that the AMG is not going to handle the alert any time soon but still wants to take responsibility for handling the alert to closure. Delaying an alert stops any Escalation or Accept Timer, if running. To ensure alerts do not get delayed and forgotten, Delaying an alert starts the Delay Timer for when the system should automatically revert the alert to the New state (See Configure Alert Timeouts). A typical duration of the Delay timer is expected to be more than the typical duration of the Accept timer.

4.4.10 Manually Escalate Alert (Use Case)

A user with proper functional rights can force escalation of an alert. This performs an escalation cycle, which, if possible, adds additional operations centers (or in a future release, Areas of Responsibility) to the visibility of the alert.

4.4.11 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.4.12 Resolve Alert (Use Case)

A user with sufficient privileges may resolve alerts. Resolving an alert brings the user to a page where this type of alert can be addressed. The following resolve pages are envisioned for current alerts: DeviceFailure: Device Details page to allow the device to be taken offline or put into maintenance mode, if appropriate; UnhandledResource: Transfer Shareable Resource page; EventStillOpenAlert: Event Details page; DuplicateEventAlert: Merge Events page; ManualAlert: Alert details page; ExecuteScheduledActionsAlert: For schedules containing one action, an action specific page will be displayed to the user. Resolving an OpenEventAction will display the Pending Event's page. For multiple scheduled actions the execute scheduled action page for the schedule will be displayed. For a schedule with no actions the ExecuteScheduledActionsAlert's details page will be displayed; External Connection Alert: External connection status list page; External Event Alert: Event details page for the external event; Travel Time Alert: Travel route details page. Toll Rate Alert: Travel route details page. Service Alert: Service details page.

4.4.13 Send External Connection Notification (Use Case)

The system will send a notification to a specified notification group if an external connection transitions to the "failed" state and remains there for an amount of time, as specified in the connection settings, if enabled in the connection settings. The system will send a notification to a specified notification group if an external connection transitions to the "warning" state and remains there for an amount of time, as specified in the connection settings, if enabled in the connection settings. (The time spent in the "failed" state contributes to the time counted for a warning).

4.4.14 Send External Event Notification (Use Case)

The system will send a notification to the group specified in the event import rule if an external traffic event matches an event import rule and the rule's settings indicate that a notification should be sent.

4.4.15 Send Toll Rate Notification (Use Case)

If toll rate notifications are enabled for a travel route, the system will send a notification to the group specified in the travel route settings if the current toll rate for the travel route expires while there is a current (non-expired) toll rates document available.

4.4.16 Send Travel Time Notification (Use Case)

If travel time notifications are enabled for a travel route, the system will send a notification to the group specified in the travel route settings when the travel time crosses the threshold specified in the travel route settings.

4.4.17 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.4.18 Unaccept Alert (Use Case)

A user with sufficient privileges may unaccept an alert in the Accepted state. Unaccepting an alert stops the Accept Timer, puts the alert in the New state, and begins the Escalation Timer. Unaccepting an alert implies that the user's AMG has changed their mind and no longer wishes to handle the alert.

4.4.19 Undelay Alert (Use Case)

A user with sufficient privileges may undelay an alert in the Delayed state. Undelaying an alert stops the Delay Timer, puts the alert in the New state, and begins the Escalation Timer. Undelaying an alert implies that the user's AMG has changed their mind and no longer wishes to handle the alert.

4.4.20 View Alert Details (Use Case)

A user with sufficient privileges may view alert details including the alert type, alert description, create time, next escalation time (if New), Unaccept time (if Accepted), Undelay time (if Delayed), closed time (if Closed), the current set of AMGs, the predicted set of AMGs at next escalation, and a history of all modifications to the alert each with a comment.

4.4.21 View Alerts (Use Case)

A user with sufficient privileges may view alerts. Viewing an alert includes the ability to see the alert type, the alert description, and the alert creation time. Alerts are organized by their state including an indication of the number of alerts in each state. A visual and auditory cue is given when the user is a member of an AMG listed in at least one New alert and the user has the rights to control the alert. The ability to view alerts does not imply the ability to control alerts. Closed alerts may be viewed only if they have not yet been archived.

4.5 R4VerifyNTCIPDMSCompatibility (Use Case Diagram)

This diagram shows the use cases for the NTCIP DMS Compatibility Tester, a stand alone tool made available to DMS vendors to check if their sign is compatible with the CHART system.

[image: image19.emf]Test DMS Poll Now CommandTest Set DMS Message CommandTest Get Extended DMS Status CommandTest Blank DMS CommandTest Perform DMS Pixel Test CommandTest Reset DMS CommandConfigure NTCIP DMS Complatibility TesterView NTCIP DMS Compatibility Test ResultsDMS SupplierTest Set DMS Central Control Mode CommandPerform NTCIP DMS Compatibility TestsSave NTCIP DMS Compatibility Test Results«include»«include»«include»«include»«include»«include»«include»

Figure 4‑5. R4VerifyNTCIPDMSCompatibility (Use Case Diagram)
4.5.1 Configure NTCIP DMS Complatibility Tester (Use Case)
The NTCIP DMS Compatibility Tester shall show the user to configure the communications and sign settings to be used during the tests. The communication settings will support direct RS232 connection or TCP/IP connection, and all parameters required by CHART for those connections. The sign settings will include fields related to the sign being tested, such as its size and other settings required by the CHART system.

4.5.2 DMS Supplier (Actor)

4.5.3 Perform NTCIP DMS Compatibility Tests (Use Case)

The NTCIP DMS compatibility tester shall allow the user to run tests to determine if their DMS supports the commands used by the CHART system.

4.5.4 Save NTCIP DMS Compatibility Test Results (Use Case)

The NTCIP DMS Compatibility tester shall allow the user to save the currently displayed results to a text file. A standard file dialog shall be used to allow the user to choose the location and name of the file.

4.5.5 Test Blank DMS Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART blank DMS command.

4.5.6 Test DMS Poll Now Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART poll now command.

4.5.7 Test Get Extended DMS Status Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART get extended status command.

4.5.8 Test Perform DMS Pixel Test Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART perform pixel test command.

4.5.9 Test Reset DMS Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART reset DMS command.

4.5.10 Test Set DMS Central Control Mode Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART set central control mode command.

4.5.11 Test Set DMS Message Command (Use Case)

The system shall allow the user to test if the DMS supports the CHART set DMS message command. The system shall allow the user to specify the message text as MULTI or plain text. When the message is specified as plain text, the tester shall use the CHART automatic message formatting algorithm to format the message for the sign.

4.5.12 View NTCIP DMS Compatibility Test Results (Use Case)

The NTCIP DMS compatibility tester shall show the user the results of any tests that they run. Each tests results shall be appended to the previously displayed results. The user shall have the ability to clear the results.

5 Detailed Design

5.1 Human-Machine Interface

Screens for the NTCIP v2 DMS feature and Watchdog feature are listed in the following sections. There are no GUI changes to speak of for the PR fixes.
5.1.1 NTCIP v2 DMS Feature

The NTCIP v2 DMS feature includes changes to the existing NTCIP related pages as shown in the following sections.

5.1.1.1 NTCIP Details Page

A section of the Details Page for NTCIP DMS devices shows new fields and new actions as shown in Figure 5-1. New status values, at the bottom left, include Control Mode, Current Msg Source, and Detected Size (in pixels), all of which are retrieved from NTCIP DMS devices on every poll in R4. New Actions include Set Central Control Mode, Perform Pixel Test, Get Extended Status, and View Last Extended Status Results. All of these appear only in maintenance mode, and only for users who hold the Maintain DMS functional right. Perform Pixel Test, Get Extended Status, and View Last Extended Status Results operate the same as for various other CHART DMS types, such as FP9500 and TS3001. The Extended Status Results Page is shown in Section 5.1.1.2. The Set Central Control Mode action forces the DMS into Central (Central/Remote) control mode, in case a field maintainer has left the DMS in local control mode. (This is available in maintenance mode only because in online mode the DMS will automatically do this on every set message request.)
[image: image20.png]
Figure 5‑1. NTCIP DMS Details Page (excerpt)
5.1.1.2 NTCIP DMS Extended Status Page

When the View Last Extended Status Results action is performed, the NTCIP DMS Extended Status Page is shown. An example is shown in Figure 5-2. As shown, the timestamp at the top of the page indicates how long ago the displayed extended status was retrieved. Note that, as for other DMS model types, the extended status is not routinely polled. Extended Status is retrieved only when specifically requested via the Get Extended Status action. If the timestamp is deemed too old, the Get Extended Status action can be requested again in order to refresh the data. As for other DMS model types, the extended status is not persisted, so if the Extended Status has not been polled since the last time the DMS’s DMS Service was restarted, no extended status will be available, and the View Last Extended Status Results link will not be available.
[image: image21.png]
Figure 5‑2. NTCIP Extended Status Page
5.1.1.3 Add NTCIP DMS

The screen for adding an NTCIP DMS will change to add two new configuration values, a default intercharacter spacing value, and a default page justification value. Both values specified for an NTCIP DMS will be sent to the DMS device on every set message request, as the default font and default line spacing already are. The new Add NTCIP DMS screen is shown in Figure 5-3.

[image: image22.png]
Figure 5‑3. Add NTCIP DMS Page (excerpt)
5.1.1.4 Edit NTCIP DMS Configuration

As when adding an NTCIP DMS, also when editing an NTCIP DMS configuration, the Basic Settings page will also display and allow editing of the default intercharacter spacing value, and default page justification value. This screen is shown in Figure 5-4.

[image: image23.png]
Figure 5‑4. Edit NTCIP Basic Settings Page (excerpt)
5.1.2 Watchdog Feature
The Watchdog feature includes changes to the existing GUI Monitor Services page, and the Service Details page. A new page used to show the monitoring configuration for a service is also included.
5.1.2.1 Monitor Services
The Monitor Services page is viewed by clicking the Monitor Services link in the Administration section in the navigation section of the GUI Home page. This is shown in Figure 5-5.
[image: image24.png]
Figure 5‑5. Monitor Services menu item
Upon clicking the Monitor Services menu item, a page will be shown in the “working window” listing all services that exist in the system, as shown in Figure 5-6.

[image: image25.png]
Figure 5‑6. Monitor Services page
This page shows the following information for each service:

· Service Name

· The Site where the service is running
· The Status of the service, as reported by a Watchdog
· The time the status of the service last changed, as reported by a Watchdog
· The time the service was last polled by a Watchdog
· The amount of time the service has been running, if it has been contacted by a Watchdog
Each column heading is a link that when clicked causes the list to be sorted on that column. After the list is sorted on a column, the user may click the column heading link again to toggle between an ascending and descending sort.

Each column also provides the ability to filter the list based on values in the column. Because so many different values could exist for Status Changed, Poll Time, and Up Time, these columns provide filter values that let the user choose a time based criteria rather than specific times, as shown in Figure 5-7.
[image: image26.png]
Figure 5‑7. Monitor Services Time Column Filter Example
Links are provided for each service to allow the details for the service to be viewed and to allow suitably privileged users to perform actions related to the service. For more information see the sections below.

5.1.2.2 Service Details

The service details page shows information about a service from 3 sources: the Watchdog monitoring the service, the service itself, and the GUI. An example of the Service Details page for the Alert Service is shown in Figure 5-8.
[image: image27.png]
Figure 5‑8. Service Details
The Status from Watchdog section contains data the GUI last obtained from the watchdog about the service. The GUI periodically polls the Watchdog for this information. However you can use the (Update) link to cause the GUI to immediately query the Watchdog for this information. The following fields are included:

· Watchdog – The watchdog that is monitoring the service. This is also a link that provides access to the details page for the Watchdog service.

· Status – The current status of the service

· Status Change Time – The time the status changed

· Poll Time – The time the Watchdog last polled the service

· Number of Auto Restarts – The number of times the Watchdog has restarted the service since the Watchdog began running

· Number of Query Attempts – The number of times the Watchdog has polled the service since the watchdog has been running

· Number of Query Failures – The number of time the Watchdog’s attempt to poll the service failed

· Query Failure Pct – The Number of Query Failures divided by the Number of Query Attempts

· Last Auto Restart Attempt – The last time the Watchdog attempted to auto-restart the service

· Last Failure Alert Attempt – The last time the Watchdog attempted to send a Service alert to indicate the service has failed

· Last Failure Notification Attempt – The last time the Watchdog attempted to send a Notification to indicate the service has failed

The Last Status from Service via Watchdog section contains information the service reported to the watchdog the last time the Watchdog successfully polled the service. The following fields are included:

· Status Retrieval Time – The time this status was obtained from the service
· Start Time – The time the service was started

· Up Time – The amount of time the service has been running

· Available Heap – The available Java heap space, based on the maximum heap setting for the service and the amount of heap currently in use

· Self Detected Status – The status reported by the service. This is available for future use; currently none of the services will report anything other than OK

· Current Log Level – The current log level in use by the service (DEBUG or PRODUCTION)

· Application Name – The name of the application

· ORB Version – The version of the Object Request Broker middleware being used by the service

· JRE Version – The version of the Java Runtime Environment being used by the service

· OS Version – The version of the Operating System where the service is running

The Status from Last GUI Contact section contains information from the last time the GUI contacted the service. The GUI does not regularly poll each service; instead the GUI polls each Watchdog, so the status from last GUI contact can become fairly old. Services can be manually polled from the GUI to update this information. The following fields are included:

· Last Contact Attempt – The last time the GUI attempted to contact this service

· Status – The status from the last GUI contact attempt

· Up Time – The amount of time the service has been running

The Component Versions section shows the versions of modules that are installed in the service. Like the Last Status from Service via Watchdog, this is information collected by the Watchdog the last time it was able to contact the service. The name of each component and its version are shown.
Actions

Below the data shown for the service there are several groups of links that allow actions to be performed.

The Perform Action on Service section contains actions that can be performed on the service directly from the GUI. The following actions are available:

· GUI Ping – This causes the GUI to ping the service to determine if the service is accessible by the GUI. After this completes the information in the Status from Last GUI Contact will be updated

· Resolve Traders – This action sends a command to the service to have it re-discover trading services that exist in the system. This is mainly used by system maintenance personnel under special circumstances

· Remove – This action removes the service from the GUI cache. This is a way to remove stale services from the GUI. If the service is actually still in the system, the service will appear in the GUI again the next time the GUI does a discovery

The Perform Action via WatchdogServiceX section provides links to actions that are performed on the service by the Watchdog that is monitoring the service. The service name that follows “via” in the section header is the name of the Watchdog that is monitoring the service. The following actions are available:

· Ping Service – This causes the Watchdog to poll the service for its current status. This command executes in the background, so the status of the service won’t necessarily change immediately after you issue this command. Instead the status for the service will change after the Watchdog has completed the poll AND the GUI has obtained the latest status from the Watchdog. You can use the (Update) link next to the Status from Watchdog section header to cause the GUI to immediately query the Watchdog for the status, and if the Watchdog has finished polling the service the status information in that section will update

· Start Service – This causes the Watchdog to execute the commands configured for starting the service. If the service is already started this will have no effect
· Stop Service – This causes the Watchdog to execute the commands configured for stopping the service. If the service is already stopped this will have no effect
· Restart Service – The causes the Watchdog to execute the commands configured for restarting the service
The Set Logging Level section allows you to set the logging level used by the service to DEBUG or PRODUCTION. The current logging level in use can be seen in the Last Status from Service via Watchdog section.
5.1.2.3 Watchdog Service Details

The details page for a Watchdog service contains all of the information described above for other services, but also contains information specific to the Watchdog’s monitoring task. Figure 5-9 shows a sample of the Monitored Services section that appears on the details page for a watchdog.
[image: image28.png]
Figure 5‑9. Watchdog Details - Monitored Services
This section of the details page for a Watchdog service shows information about the services the watchdog is monitoring. The following fields are shown for each service:

· Service Name – The name of the service. Each name is also a link to the details page for that service

· Status – The current status, as determined by the Watchdog

· Status Changed – The last time the status changed

· Poll Time – The last time the Watchdog attempted to contact the service

· Up Time – The amount of time the service has been running

· Action – A link to view the monitoring configuration being used by the Watchdog for that service. See the section below for details

If there are services that the watchdog is configured to monitor but the Watchdog has been unable to discover them within the CHART system and/or contact them, there will be a section named Watchdog: Monitored Unidentified Services that lists those services, shown in figure 5-10.
[image: image29.png]
Figure 5‑10. Watchdog Monitored Unidentified Services
This table of services is similar to the table of Monitored Services. However, the actions column includes the ability to Ping, Start, Stop, and Restart the service. Also, the service name will not be a link because there is no details page for an unidentified service.
5.1.2.4 Service Monitoring Details
The Service Monitoring Details page shows the configuration values used by the Watchdog for a specific service. This page is somewhat long, and therefore is discussed section by section below.
Page Heading
The page heading shows the name of the Watchdog and the site where the Watchdog is running, and the service whose monitoring details are shown. An example is shown in Figure 5-11.
[image: image30.png]
Figure 5‑11. Watchdog Service Monitoring Details Page Heading
Auto Restart Configuration
The Auto Restart Configuration section includes settings that specify whether or not the Watchdog should restart the service, when the restart should be done, and settings that determine if an alert and/or notification should be sent when a restart occurs, and who should receive them. A sample of this section of the page is shown in Figure 5-12.
[image: image31.png]
Figure 5‑12. Service Auto Restart Configuration
The following fields are included:

· Auto Restart on Failure – A flag that indicates if the Watchdog should attempt to auto restart this service after the auto restart threshold has passed

· Auto Restart Threshold – The number of seconds the service must be failed before the Watchdog will attempt to restart it

· Send Alert on Auto-Restart – Flag that indicates if an alert should be sent when the Watchdog restarts the service

· Auto-Restart Alert Op Center – The operations center that will receive the alert if sent

· Send Notification on Auto-Restart – Flag that indicates if a notification should be sent when the Watchdog restarts the service

· Auto-Restart Notification Group – The notification group that will receive the notification if sent

Failure Alert Configuration
The failure alert configuration specifies if an alert should be sent after the service has been failed for a specified amount of time, and the op center that should receive the alert. See Figure 5-13 for an example of this section:

[image: image32.png]
Figure 5‑13. Service Failure Alert Configuration
The following fields are included in the Failure Alert Configuration:

· Send Alert on Failure – Flag that indicates if an alert should be sent when the service has been failed for longer than the failure alert threshold

· Failure Alert Threshold – The number of seconds the service must be failed before the Watchdog will send an alert

· Failure Alert Op Center – The operations center that is to receive the alert

Failure Notification Configuration
The failure notification configuration specifies if the Watchdog should send a notification when the service is failed, and which group is to be notified. An example is shown in Figure 5-14.
[image: image33.png]
Figure 5‑14. Service Failure Notification Configuration
The following fields are included:

· Send Notification on Failure – Flag that indicates if the Watchdog should send a notification if the service is failed for longer than the failure notification threshold

· Failure Notification Threshold – The number of seconds the service must be failed before the Watchdog will send a notification

· Failure Notification Group – The group that is to be notified

Command Sections
The remainder of the service monitoring details page shows the commands that are used by the Watchdog to automatically restart the service and the commands used when the Watchdog is told (via the GUI) to start, stop, or restart the service. Example Auto-Restart commands are shown if Figure 5-15; the other command sections (start, stop, restart) are similar.

[image: image34.png]
Figure 5‑15. Service Auto-Restart Commands
The commands listed are executed by the Watchdog in the order shown. The following fields exist for each command:
· Command – The name of the command, and the actual shell command that will be run
· Allowed Return Codes – The return codes from the shell that indicate the command succeeded
· Abort on Failure – Flag that indicates if the Watchdog should stop the execution of the command list if the command fails
· Delay After Cmd – The amount of time the Watchdog should wait after executing the command. This even applies to the last command in the list, as this can help separate back to back commands (stop, then start for example)
5.1.3 NTCIP DMS Compliance Tester

The NTCIP DMS Compliance Tester is a stand alone application used by DMS vendors to test if their NTCIP DMS is compatible with the CHART system. This application is a simple menu driven graphical user interface whose main window is used to show results of tests initiated by the user.

5.1.3.1 Main Window

The main window of the NTCIP DMS Compliance Tester consists of a menu and a text area. The text area is where test results are shown, and is initialized with a message stating the application name and version. This is to ensure the name and version appears in any results file that is saved.

[image: image35.png]
Figure 5‑16 NTCIP DMS Compliance Tester Main Window

The file menu contains items related to clearing and/or saving the results shown in the main window, and also allows the user to exit the application.

[image: image36.png]
Figure 5‑17 NTCIP DMS Compliance Testser File Menu

The following menu items exist:

· Clear Results – This menu item causes the results currently shown in the main window to be cleared. The results area of the main window will be re-initialized to show the application name and version.
· Save Results – This menu item is only enabled after the results have been saved at least once using “Save Results As…” and can be used to save interim results. For example, the user might save the results once using “Save Results As…”, and then run more tests and save the results to the same file without having to again pick the file where the results are to be saved.
· Save Results As… - This menu item allows the user to save the current results in the main window into a file on their local file system. The user will be prompted with a standard directory/file selection dialog so they can choose the directory where their results will be stored and the name of the results file. The results will be saved in standard text format.
· Exit – This menu item allows the user to exit the application. If the user has unsaved results, they will be prompted to ask if they wish to save the results before exiting.
The Configuration menu provides access to menu items to view and set the communications and sign settings:

[image: image37.png]
Figure 5‑18 NTCIP DMS Compliance Tester Configuration Menu
The following menu items exist:

· Communications… - This menu item causes the communications settings dialog to be shown. It shows the current communications settings that will be used by the tester to communicate with the DMS being tested, and allows the user to change and save the settings. See 4.1.1.2 below for details.
· Sign Settings… - This menu item causes the sign settings dialog to be shown. It shows the current sign settings that will be used while communicating with the sign, and allows the user to change and save the settings. See 4.1.1.3 below for details.
The Tests menu provides menu items that allow tests to be run:

[image: image38.png]
Figure 5‑19 NTCIP DMS Compliance Tester Tests Menu
The following menu items are included:

· All – This menu item causes all of the tests listed in the menu items below to be run, one after the other.
· Poll Now – This menu item causes the Poll Now test to be run. The tester connects to the sign and then polls it for status and also sets the comm loss timeout. If successful, the retrieved status values are shown.
· Set Message… - This menu item causes the Set Message dialog to be shown. The dialog allows the message text to be set (using MULTI or plain text) and then allows the set message test to be invoked with that message text. The Set Message test not only sets the message, but also sends default settings to the sign that may be used when setting the message. This includes the default font, default line spacing, default inter-character spacing, and default page justification as specified in the Sign Setttings.
· Blank – This menu item causes the Blank test to be run. This test issues a command to the sign to have it blank its display.
· Set Central Control Mode – This menu item causes the Set Central Control Mode test to be issued. This issues a command to the sign to have it enter central control mode (as opposed to local control mode). This command is used within CHART to allow a sign that has been left in local control mode to again be controlled by CHART.
· Pixel Test – This menu item causes a command to be sent to the DMS to have it execute a pixel test. A pixel test can involve a vendor specific procedure used to detect failed pixels, and often involves the display of patterns on the DMS.
· Get Extended Status – This menu item causes the Get Extended Status test to be run. This causes the tester to issue commands to the sign to obtain extended status. The status values retrieved will be displayed if successful.
· Reset DMS – This menu item causes the Reset DMS test to be run. This test sends a command to the sign to cause the controller to be reset.
The Help menu provides access to the help documentation and the release information:

[image: image39.png]
Figure 5‑20 NTCIP DMS Compliance Tester Help Menu

The following menu items are available in the Help menu:

· Documentation… - This menu item causes the help documenation to be displayed.
· About… - This menu item causes a dialog to appear that shows the version and copyright information for the application.
5.1.3.2 Communication Settings

The communication settings dialog allows the user to specify how the tester is to connect to the DMS that is to be tested. Two communications methods are supported: RS232 and TCP/IP. The settings dialog changes depending on the communications method selected:

[image: image40.png]
Figure 5‑21 NTCIP DMS Compliance Tester Communications Settings (RS232)

[image: image41.png]
Figure 5‑22 NTCIP DMS Compliance Tester Communication Settings (TCP/IP)

RS232 Settings

The following settings are available when the communications type is set to RS232:

· Comm Port Name – The name of the RS232 Comm Port where the DMS is connected to the computer running the NTCIP DMS Compliance Tester using an appropriate RS232 cable (note that a null modem cable may be required).
· Baud Rate – The baud rate used to communicate with the DMS.
· Data Bits – The number of data bits used when communicating with the DMS.
· Parity – The parity used when communicating with the DMS.
· Stop Bits – The number of stop bits used when communicating with the sign.

· Flow Control – The flow control used when communicating with the sign.

TCP/IP Settings

The following settings are available when the communications type is set to TCP/IP:

· IP Address – The IP Address of the DMS.

· Port – The Port where the DMS listens for connections.

General Settings

The following settings apply to both RS232 and TCP/IP connections:

· Drop Address – The drop address of the DMS.
· SNMP Community – The SNMP Community string of the DMS.
· HDLC Frame Required flag – The flag that indicates if an HDLC frame is required when communicating with the DMS.

· Receive, Initial Timeout (ms) – The maximum amount of time to wait for the first byte of a response from the DMS, in milliseconds.
· Receive, Inter Char Timeout (ms) – The maximum amount of time to wait for each additional character of a response from the DMS, in milliseconds.
· Receive, Total Duration (ms) – The maximum amount of time to wait for the entire response from the DMS, in milliseconds.

5.1.3.3 Sign Settings

The Sign Settings dialog allows the user to configure settings related to the DMS being tested:

[image: image42.png]
Figure 5‑23 NTCIP DMS Compliance Tester Sign Settings

The following settings are available:

· Sign Height (Pixels) – The height of the sign, in pixels.
· Sign Width (Pixels) – The width of the sign, in pixels.
· Character Height (Pixels) – The character height, in pixels. The default value of 7, used within CHART, is recommended.
· Character Width (Pixels) – The character width, in pixels. The default value of 5, used within CHART, is recommended.
· Has Beacons flag – Flag to indicate if the sign has beacons.

· Max Pages – The maximum number of pages supported by the sign. A value of 2, which is the default value used in CHART, is recommended.
· Default Page On Time (tenths) – The number of tenths of seconds the sign should display a page of a message. The default value of 250, used in CHART, is recommended.
· Default Page Off Time (tenths) – The number of tenths of seconds the sign should be blank before displaying the next page. The default value of 0, used in CHART, is recommended.
· Default Font (slot #) – The default font number of the sign to use. This is sent to the sign during the Set Message operation.
· Default Line Spacing (pixels) – The default number of pixels between lines of a message. This is sent to the sign during the Set Message operation.
· Default Inter Char Spacing (pixels) – The default number of pixels between characters. This is sent to the sign during the Set Message operation.
· Default Line Justification – The default line justification used within messages formatted using the CHART message formatting algorithm for plain text messages. (Note, this is used within the CHART automatic message formatting algorithm, but not sent to the sign).
· Default Page Justification – The default page justfication. This is sent to the sign during the Set Message operation.
· Comm Loss Timeout (mins) – The comm loss timeout for the sign, which is the amount of time that may elapse without the sign receiving any central communications before the sign will blank its current message. This value is sent to the sign during the Poll Now command.
5.1.3.4 Tests

Each test operates in basically the same manner. The user initiates a test by selecting the appropriate menu item (shown above). Information about the progress of the test will appear within the main application window, which automatically scrolls to the bottom as information is added. The example below shows a Poll Now test that has failed:

[image: image43.png]
Figure 5‑24 NTCIP DMS Compliance Tester Sample Test Results

The Set Message test is a bit different than the other tests, in that it presents the user with a dialog allowing them to configure the message text to be used during the test. Note that this dialog will not appear when the user chooses to run All tests; the currently configured message is used in that case.

[image: image44.png]
Figure 5‑25 NTCIP DMS Compliance Tester Set Message Dialog

This dialog allows the user to choose to specify their message using plain text or MULTI. When the user chooses plain text, the message text will be automatically converted to MULTI using the CHART automatic message formatting algorithm. This algorithm employs rules regarding words that cannot be broken onto separate lines, use of vertical space when a message does not use all rows of the sign, etc. When the set message test is done with a message specified as plain text, the results of the conversion to MULTI will be shown as part of the test results. Instead of specifying the message as plain text, the user can choose to specify the message text as MULTI. When this is done, the text entered is passed to the DMS as-is without alteration, allowing tests to be done with both valid and invalid MULTI.
5.1.3.5 Save Results

The user can save the test results to a text file using the “Save Results” or “Save Results As …” menu items. The “Save Results” menu item is disabled until “Save Results As …” has been executed at least one time and a file name has been selected. “Save Results As…” allows the user to choose a directory and file where the results will be saved (see example below).

[image: image45.png]
Figure 5‑26 NTCIP DMS Compliance Tester Save Results

After “Save Results As …” has been executed, the chosen file name will appear in the window title and “Save Results” can be used to save the results to that file without having to select the file again.

[image: image46.png]
Figure 5‑27 NTCIP DMS Compliance Tester with Results File Name

5.1.3.6 Clear Results

The “Clear Results” menu item, when clicked, causes all results in the main window to be erased, and the text area to be initialized with the version information for the tester.
5.1.3.7 Help

The help menu provides access to the help documentation and the version information. When the user clicks the “About …” menu item, a dialog shows the copyright and version information, shown below:

[image: image47.png]
Figure 5‑28 NTCIP DMS Compliance Tester About Dialog
When the user clicks the “Documentation…” menu item, a window appears with the help documentation for the NTCIP DMS Compliance Tester. The Help documentation is a single HTML document displayed in a dialog window, as shown below:

[image: image48.png]
Figure 5‑29 NTCIP DMS Compliance Tester Help Dialog
5.2 Alert Module

5.2.1 Class Diagrams
5.2.1.1 AlertModule (Class Diagram)

This class diagram defined the classes in the AlertModule package. These classes define the AlertModule server. It utilizes generated IDL classes as wells as other Chart2 utility classes.

[image: image49.emf]11UnhandledResourcesAlert

«interface»

DeviceFailureAlertImpl

«implementationClass»

AlertDBAcceptDelayTimerTaskjava.util.Timer11java.util.TimerTaskExternalConnectionAlert

«interface»

TollRateAlert

«interface»

ExternalConnectionAlertImpl

«implementationClass»

TollRateAlertImpl

«implementationClass»

ExternalConnectionAlertData

«struct»

TollRateAlertData

«struct»

1

1

1

1

11*DuplicateEventAlertImpl

«implementationClass»

1ArchiveTimerTask11AlertFactory«interface»EventStillOpenAlertImpl

«implementationClass»

1

1

1

1

1

1

1

1

ExternalEventAlert

«interface»

TravelTimeAlert

«interface»

ExternalEventAlertImpl

«implementationClass»

TravelTimeAlertImpl

«implementationClass»

ExternalEventAlertData

«struct»

TravelTimeAlertData

«struct»

1

1

1

1

1

1

ExecuteScheduledActionsAlert

«interface»

1

*111AlertModulePropertiesDBConnectionManagerServiceApplication«interface»1EscalateTimerTask1GenericAlert

«interface»

EventStillOpenAlert

«interface»

java.util.PropertiesDataModel11SeeProxyAlertClassesClass Diagram fordetails.11111ProxyAlert1ObjectCacheDeviceFailureAlertData

«struct»

DuplicateEventAlertData

«struct»

EventStillOpenAlertData

«struct»

1

1

1

1

1

*1

AlertFactoryImpl«implementationClass»111AlertModule«implementationClass»1ExecuteScheduledActionsAlertData

AlertPrivateDataExecuteScheduledActionsAlertImpl

1

1

1

1

1

1

1

1

1

1

UnhandledResourcesAlertData

«datatype»

AlertData

«datatype»

1

UniquelyIdentifiable«interface»11ServiceAlert

«interface»

New Aug 09ServiceAlertImpl

ServiceAlertData

1

1

1

1

11UnhandledResourcesAlertImpl

«implementationClass»

GenericAlertImpl

«implementationClass»

DeviceFailureAlert

«interface»

111Alert«interface»1

1

*DuplicateEventAlert

«interface»

1

AlertImpl«implementationClass»PushEventConsumerPushEventSupplier1ServiceApplicationModule«interface»1alertFactoryImpl(factoryId : Identifier, svcApp : ServiceApplication, db : AlertDB, alertPushEventSupplier : PushEventSupplier, props : AlertModuleProperties) : ctor+checkAlertManageability(type: AlertType, visibiliity : AMG[]) : boolean+discoverOpCenters() : void+discoverRemoteAlerts() : void+escalateTimedOutAlerts() : void+findOpCenterConfig(opCenterId : Identifier) : OpCenterConfiguration+getBackupAMGsFor(currentVis : AlertManagementGroup[]) :AlertManagementGroup[]+getOpCenterConfigsFromTrader() : void+markTimedOutAlertsForArchiving() : void+reNewTimedOutAlerts() :void+shutdown() : void-addAlertTypesToTrader() : void-log(flags : string, method : string, txt : string) : void-logProd(method : string, txt : string) :void-pushAlertAdded(theAlert : Alert, extAlertData : ExtendedAlertData) :boolean-pushAlertDeleted(alertId : Identifier) : void-verifyUnique(extAlertData : ExtendedAlertData) : void-verifyUniqueLocally(extAlertData : ExtendedAlertData) : void-verifyUniqueRemote(extAlertData : ExtendedAlertData) : voidgetEscalateTimerStartupDelay() : intgetEscalateTimerInterval() : intgetAcceptDelayTimerStartupDelay() : intgetAcceptDelayTimerInterval() : intgetArchiveTimerInterval() : intPushEventConsumer(channel, pushConsumer)m_event_channel : EventChannelm_pushConsumer : CosEvent.PushConsumer+AlertImpl(id:Identifier,

 extData:ExternalAlertData,

 factory:AlertFactoryImpl,

 pushEventSupplier:PushEventSupplier,

 svcApp:ServiceApplication,

 db:AlertDB) : ctor

#compare(other:AlertImpl):boolean

#getTypeSpecificData():ExtendedAlertData

getAlerts() : AlertImpl[]getAlert() : ExtendedAlertDatasetAlert(connMgr:DBConnectionManager, alert:ExtendedAlertData, privAlertPrivateData) : voidsetAlertOffline(id : Identifier) : void+getConnection() : java.sql.Connection+getCurrentOpenCursors() : int+releaseConnection() : void+shutdown() : void+verifyDBInitialized() : booleanbaseAlertData:AlertData

serviceAlertType:ServiceAlertType

watchdogID:Identifier

serviceID:Identifier

alertedStatusCode:ServiceStatusCode

alertedStatusChangeTime:Timestamp2

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

+AlertImpl(id : Identifier, data : AlertData, factory : AlertFactoryImpl, pushEventSupplier : PushEventSupplier, svcApp : ServiceApplication, db AlertDB) : ctor+equals(AlertImpl other) : boolean#changeState(AlertState newState) : boolean#compare(AlertImpl other) : boolean#escalateIfNecessary() : boolean-escalateIfNecessary(opCtrID:Identifier, comment:String, user:String)#getTypeSpecificData() : ExtendedAlertData#markOfflineIfNecessary() : boolean#persistAndPushAlert() : void#persistAlert() : void#performEscalation() : boolean#pushAlertAdded(theAlert : Alert, extAlertData : ExtendedAlertData) :boolean#reNewIfNecessary() : boolean#log(flags : string, method : string, txt : string) : void#logProd(method : string, txt : string) :void#logLockDone(lock : string) : void#logLockRcvd(lock : string) : void#logLockRqst(lock : string) : voidinitialize(ServiceApplication app):booleangetVersion() : ComponentVersiontraderGroupUpdated() : voidshutdown(ServiceApplication app):booleanServiceApplication m_svcApp;DefaultServiceApplicationProperties m_props;schedule() : voidcancel() : voidbaseAlertData: AlertData

scheduleId: Identifier

schedActions: ActionData[]

AlertModule() : ctor-createEventChannel(name) : PushEventSupplier-createAlertFactory() : boolean- addAlertFactoryTypesToTrader() : voidrun()+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

PushEventSupplier(EventChannelFactory factory, String channelName, PushSupplier supplier)getChannel():EventChannel;getMaxReconnectInterval(void):int;setMaxReconnectInterval(int seconds):void;push(Any data):void;disconnectPushConsumer(void):void;+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

baseAlertData: AlertData

extEventId: Identifier

firstAlertRuleMetId: Identifier

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

prevEscalationResetTime : TimestampisOffline : booleanbaseAlertData: AlertData

extConnId: Identifier

isWarning: boolean

alertStatusChangeTimeSecs: long

alertStatusConfirmTimeSecs: long

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

baseAlertData: AlertData

travelRouteId: Identifier

alertedTravelTimeSecs: int

alertedTravelTimeEffSecs: long

travelTimeAlertLimitSecs: int

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

baseAlertData: AlertData

TravelRouteId: Identifier

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

baseAlertDate: AlertData

newerEvent: Identifier

olderEvent: Identifier

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

baseAlertData: AlertData

eventId: Identifer

typeOfFailedDevice: DeviceFailureDeviceType

failureType: DeviceFailureType

alertId: Identifier

description: string

type: AlertType

description: string

state: AlertState

responsibleUser: string

responsibleCenterInfo: OpCenterInfo

alertCreationTime: datetime

alertCurrentVisibility: AlertManagementGroup[]

alertNextVisibility: AlertManagementGroup[]

nextActionTimeMsec : unsigned long

alertLastStateChangeTime: unsigned long

alertHistory : AlertHistory[]

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

baseAlertData: AlertData

eventId: Identifer

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

baseAlertData: AlertData

opCenterId: Identifier

Figure 5‑30. AlertModule (Class Diagram)
5.2.1.1.1 AcceptDelayTimerTask (Class)

This class implements the alert accept-and-delay timer task. It periodically inspects alerts in the accept state for those that have taken too long completion in the accept state. This accept timeout limit is established in the system profile for each alert. Similarly it periodically reviews the alerts in the delay state for those whose delay period has expired. As with the accept state timeout, the delay timeout period is established in the system profile for each alert type. When either the accept timeout or the delay timeout expires, this task calls into the AlertImpl to escalate the alert.
5.2.1.1.2 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage an alert.

5.2.1.1.3 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.2.1.1.4 AlertDB (Class)

This class provides a database interface for the AlertModule. It includes methods needed to store and retrieve Alert related information.

5.2.1.1.5 AlertFactory (Class)

This IDL interface contains the operations available for an Alert Factory. The AlertFactory is responsible for creating alerts and storing alert information on the alerts that it created.

5.2.1.1.6 AlertFactoryImpl (Class)

This AlertFactoryImpl class implements the IDL AlertFactory interface and is responsible for creating and managing the objects created to represent alerts (AlertImpls) in the Chart2 system.

5.2.1.1.7 AlertImpl (Class)

The AlertImpl class implements the IDL Alert interface. The AlertImpl class contains the base class functionality for all other alert types in the Chart2 system. Each instance of one of the AlertImpls derived types represents a specific alert.
5.2.1.1.8 AlertModule (Class)

This class provides the resources and support functionality necessary to serve alert related objects in a service application. It implements the ServiceApplicationModule interface which allows it to be served from any ServiceApplication.

5.2.1.1.9 AlertModuleProperties (Class)

This class provides operations for getting values in the service's java properties file.

5.2.1.1.10 AlertPrivateData (Class)

This class contains base alert data which is private to the AlertImpl class, Among the data stored in AlertPrivateData is the time of the previous escalation or reset time, and the isOffline flag to indicate the alert is ready for archiving.

5.2.1.1.11 ArchiveTimerTask (Class)

This class implements the alert archive timer task. It periodically sweeps through the closed alerts in the system for those alerts deemed old enough to be archived. If an alert is found that has aged beyond the system defined archive timer limit, it will set a flag on the alert to mark it for removal. At some later time a separate database task will run to remove and off-load these alerts to an archive file.

5.2.1.1.12 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.2.1.1.13 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.2.1.1.14 DeviceFailureAlert (Class)

This IDL interface contains operations specific to a Device Failure alert. This interface is implemented by classes representing DeviceFailureAlerts in the Chart2 System.

5.2.1.1.15 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.2.1.1.16 DeviceFailureAlertImpl (Class)

The DeviceFailureAlertImpl class is derived from the AlertImpl class and implements the IDL DeviceFailureAlert interface. Type specific functionality is provided by this class for Device Failure alerts.

5.2.1.1.17 DuplicateEventAlert (Class)

This IDL interface contains operations specific to a Duplicate Event alert. This interface is implemented by classes representing DuplicateEventAlertsDevice in the Chart2 System.

5.2.1.1.18 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.2.1.1.19 DuplicateEventAlertImpl (Class)

The DuplicateEventAlertImpl class is derived from the AlertImpl class and implements the IDL DuplcateEventAlert interface. Type specific functionality is provided by this class for Duplicate Event alerts.

5.2.1.1.20 EscalateTimerTask (Class)

This class implements the alert escalate timer task. It periodically checks the new alerts in the system for those that have not been accepted, delayed, or closed within the escalation timeout period. This timeout period is established in the system profile for each alert type. If an alert is found that has exceeded the escalation timer limit, a call into AlertImpl will be made to escalate the alert.

5.2.1.1.21 EventStillOpenAlert (Class)

This IDL interface contains operations specific to a Event Still Open alert. This interface is implemented by classes representing EventStillOpenAlerts in the Chart2 System.

5.2.1.1.22 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.2.1.1.23 EventStillOpenAlertImpl (Class)

The EventStillOpenAlertImpl class is derived from the AlertImpl class and implements the IDL EventStillOpenAlert interface. Type specific functionality is provided by this class for Event Still Open alerts.

5.2.1.1.24 ExecuteScheduledActionsAlert (Class)

This IDL interface contains operations specific to aExecute Scheduled Actions alert. This interface is implemented by classes representing ExecuteScheduledActionsAlert in the Chart2 System.

5.2.1.1.25 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an ExecuteScheduledActionsAlert.

5.2.1.1.26 ExecuteScheduledActionsAlertImpl (Class)

The ExecuteScheduledEventAlertImpl class is derived from the AlertImpl class and implements the IDL ExecuteScheduledEventAlert interface. Type specific functionality is provided by this class for scheduled event alerts.

5.2.1.1.27 ExternalConnectionAlert (Class)

This IDL interface contains operations specific to an External Connection Alert, which indicates trouble with a connection between CHART and an external system.

5.2.1.1.28 ExternalConnectionAlertData (Class)

This IDL structure contains data specific to an External Connection Alert, e.g., the ID of the interface which is having trouble and a flag indicating whether the connection is in failure or warning status, the timestamp it transitioned. (The GUI displays additional data which is best acquired from the GUI's object cache.) (Text in the base AlertData structure provides a textual description and alert management data.)

5.2.1.1.29 ExternalConnectionAlertImpl (Class)

This is the implementation of the External Connection Alert, which alerts users to trouble with an external connection. This can be a failure or a warning status. (Users can specify whether to receive failures and warnings, or just failures).

5.2.1.1.30 ExternalEventAlert (Class)

This IDL interface contains operations specific to an External Event Alert, which indicates an event has arrived from an external system which satisfies criteria a CHART administrator has defined to flag an external event as significant enough to warrant this alert.

5.2.1.1.31 ExternalEventAlertData (Class)

This IDL structure contains data specific to an External Event Alert, e.g., the ID of the event and the ID of the first rule found that requested an alert be sent. (Text in the base AlertData structure provides a textual description and alert management data.)

5.2.1.1.32 ExternalEventAlertImpl (Class)

This is the implementation of the External Event Alert, triggered by receipt of events with match the external event alert settings in the event import module, as defined by a CHART administrator.

5.2.1.1.33 GenericAlert (Class)

This IDL interface contains operations specific to a Generic alert. This interface is implemented by classes representing GenericAlerts in the Chart2 System.

5.2.1.1.34 GenericAlertImpl (Class)

The GenericAlertImpl class is derived from the AlertImpl class and implements the IDL GenericAlert interface. Any type specific functionality that may be implemented in the future would be provided by this class for Generic alerts.

5.2.1.1.35 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

5.2.1.1.36 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.2.1.1.37 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.2.1.1.38 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.2.1.1.39 ProxyAlert (Class)

This class is used as a proxy for alerts existing in all alert modules in the system (including the local service). The complete set of data for each alert is stored in the ProxyAlert, along with its ID and a reference to the Alert object it represents. These proxy alerts allow every alert module service in the system to have some knowledge of every alert in the entire system, for the quickly determining whether a proposed new alert already exists elsewhere in the alert system (and therefore does not need to be redundantly entered into the system again). ProxyAlert implements the Duplicatable interface, so that the ObjectCache can generically be queried to check for duplicates of any other ProxyAlert. This ProxyAlert class is the super class for derived classes for each specialized type of alert in the system, so that type specific data can be stored and accessed for each alert type, and can be queried for comparison for the Duplicatable isDuplicateOf() method.

5.2.1.1.40 PushEventConsumer (Class)

This class is a utility class which will be responsible for connecting a consumer implementation to an event channel, and maintaining that connection. When the verifyConnection method is called, this object will determine if the channel has been lost and will attempt to re-connect to the channel if it has.

5.2.1.1.41 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.2.1.1.42 ServiceAlert (Class)

This is a CORBA interface for alerts that pertain to CHART services.

5.2.1.1.43 ServiceAlertData (Class)

This class contains data specific to a ServiceAlert. It's possible that the serviceID could be the null identifier if the watchdog was not able to contact the service at least once.

5.2.1.1.44 ServiceAlertImpl (Class)

The ServiceAlertImpl class is derived from the AlertImpl class and implements the IDL ServiceAlert interface. Type specific functionality is provided by this class for service alerts.

5.2.1.1.45 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.2.1.1.46 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.2.1.1.47 TollRateAlert (Class)

This IDL interface contains operations specific to an Toll Rate Alert, which indicates a travel route which had a currently active toll rate no longer does in a more recently received toll rate update document from a toll rate provider. (This alert is not sent if a toll rate expires due to an absence of any current toll rate document -- such an event would have triggered one external connection alert and does not need to also trigger a multitude of individual toll rate alerts as well.)

5.2.1.1.48 TollRateAlertData (Class)

This IDL structure contain data specific to a Toll Rate Alert, e.g., the travel route which no longer has data for its toll rate. (Text in the base AlertData structure provides a textual description and alert management data.)

5.2.1.1.49 TollRateAlertImpl (Class)

This is the implementation of the Toll Rate Alert, which is sent when a toll rate document is received from the toll rate supplier which is missing a toll rate which had been present in the prior document.

5.2.1.1.50 TravelTimeAlert (Class)

This IDL interface contains operations specific to an Travel Time Alert, which indicates the travel time associated with a travel route is high enough to warrant this alert.

5.2.1.1.51 TravelTimeAlertData (Class)

This IDL structure contains data specific to a Travel Time Alert, e.g., the travel time limit and the travel time which exceeded the limit. (Text in the base AlertData structure provides a textual description and alert management data.)

5.2.1.1.52 TravelTimeAlertImpl (Class)

This is the implementation of the Travel Time Alert, which is sent when the travel time calculated for a Travel Route exceeds the alert threshold configured for the Travel Route by a CHART Administrator.

5.2.1.1.53 UnhandledResourcesAlert (Class)

This IDL interface contains operations specific to a Unhandled Resources alert. This interface is implemented by classes representing UnhandledResourceAlerts in the Chart2 System.

5.2.1.1.54 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an UnhandledResourcesAlert.

5.2.1.1.55 UnhandledResourcesAlertImpl (Class)

The UnhandledResourceAlertImpl class is derived from the AlertImpl class and implements the IDL UnhandledResourceAlert interface. Type specific functionality is provided by this class for Unhandled Resource alerts.

5.2.1.1.56 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.2.1.2 ProxyAlertClasses (Class Diagram)

This class diagram shows all classes related to the storage of proxy alerts in the object cache. The ProxyAlert class, and its subclasses, provide access to all alerts known to be in the system, so that an alert factory can quickly determine whether a requested new alert already exists elsewhere in the alert system (and therefore does not need to be redundantly entered into the system again).
[image: image50.emf]ProxyServiceAlertServiceAlertDataNew Aug 0911ProxyExecuteScheduledActionsAlert11ObjectCacheAlertData«datatype»ProxyGenericAlert1*ProxyTravelTimeAlertTravelTimeAlertData«struct»TollRateAlertData«struct»ProxyExternalConnectionAlertProxyTollRateAlertExternalConnectionAlertData«struct»11ProxyEventStillOpenAlertEventStillOpenAlertData«struct»111Duplicatable«interface»1111DeviceFailureAlertData«struct»11ProxyDuplicateEventAlert1DataModelExecuteScheduledActionsAlertDataAlert«interface»R3B3: New classes11ExternalEventAlertData«struct»1ProxyAlert1ProxyUnhandedResourcesAlert1ProxyDeviceFailureAlertDuplicateEventAlertData«struct»1ProxyExternalEventAlert1UnhandledResourcesAlertData«datatype»111+getDeviceFailureAlertData() : DeviceFailureAlertData+setDeviceFailureAlertData(data : DeviceFailureAlertData) : void+isDuplicateOf(other : ProxyDeviceFailureAlert) :booleanm_deviceFailureAlertData : DeviceFailureAlertDataisDuplicateOf(type : Class, other : Duplicatable) : boolean+getDuplicateEventAlertData() : DuplicateEventAlertData+setDuplicateEventAlertData(data : DuplicateEventAlertData) : void+isDuplicateOf(other : ProxyDuplicateEventAlert) :booleanm_duplicateEventAlertData : DuplicateEventAlertData+getServiceAlertData():ServiceAlertData+setServiceAlertData(data:ServiceAlertData):void+isDuplicateOf(other:ProxyServiceAlert):booleanm_serviceAlertData:ServiceAlertData+getRef() : Alert+getAlertData() : AlertData+setAlertData(data : AlertData) : void+getExtendedAlertData() : ExtendedAlertData+isDuplicateOf(other : ProxyAlert): booleanm_ref : Alertm_alertData : AlertData+getEventStillOpenAlertData() : EventStillOpenAlertData+setEventStillOpenAlertData(data : EventStillOpenAlertData) : void+isDuplicateOf(other : ProxyEventStillOpenAlert) :booleanm_eventStillOpenAlertData : EventStillOpenAlertData+getExternalConnectionAlertData()+setExternalConnectionAlertData(data: ExternalConnectionAlertData):void+isDuplicateOf(other:ProxyExternalConnectionAlert) : booleanm_externalConnectionData: ExternalConnectionAlertData+isDuplicateOf(other : ProxyGenericAlert) :boolean+getTollRateAlertData()+setTollRateAlertData(data: TollRateAlertData):void+isDuplicateOf(other:ProxyTollRateAlert) :booleanm_tollRateAlertData: TollRateAlertData+getUnhandledResourcesAlertData() : UnhandledResourcesAlertData+setUnhandledResourcesAlertData(data : UnhandledResourcesAlertData) : void+isDuplicateOf(other : ProxyUnhandledResourcesAlert) :booleanm_unhandledResourcesAlertData : UnhandledResourcesAlertData+getTravelTimeAlertData()+setTravelTimeAlertData(data: TravelTimeAlertData):void+isDuplicateOf(other:ProxyTravelTimeAlert): booleanm_traveltimeAlertData: TravelTimeAlertData+getExecuteScheduledActionsAlertData():ExecuteScheduledActionsAlertData+setExecuteScheduledActionsAlertData(data : ExecuteScheduledActionsAlertData) : void+isDuplicateOf(other : ProxyExecuteScheduledActionsAlert) :booleanm_proxyExecuteScheduledActionsAlertData:ExecuteScheduledActionsAlertData+getExternalEventAlertData()+setExternalEventAlertData(data: ExternalEventAlertData):void+isDuplicateOfotherProxyExternalEventAlert ()boolean()m_externalEventAlertData: ExternalEventAlertData

Figure 5‑31. ProxyAlertClasses (Class Diagram)
5.2.1.2.1 Alert (Class)
This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage an alert.

5.2.1.2.2 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.2.1.2.3 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.2.1.2.4 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.2.1.2.5 Duplicatable (Class)

This java interface is implemented by classes which have sense of being "duplicated" within the CHART system. This allows the ObjectCache to search for duplicates of any Duplicatable object. This is different from "equals()" or "compareTo()". To cite two examples: Alerts within CHART are duplicates if they refer to the same objects within CHART (but do not have the same Alert ID, which is more closely associated with "equals()"). Traffic Events within CHART are duplicates if they have the same location (but do not have the same Traffic Event ID).

5.2.1.2.6 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.2.1.2.7 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.2.1.2.8 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an ExecuteScheduledActionsAlert.

5.2.1.2.9 ExternalConnectionAlertData (Class)

This IDL structure contains data specific to an External Connection Alert, e.g., the ID of the interface which is having trouble and a flag indicating whether the connection is in failure or warning status, the timestamp it transitioned. (The GUI displays additional data which is best acquired from the GUI's object cache.) (Text in the base AlertData structure provides a textual description and alert management data.)

5.2.1.2.10 ExternalEventAlertData (Class)

This IDL structure contains data specific to an External Event Alert, e.g., the ID of the event and the ID of the first rule found that requested an alert be sent. (Text in the base AlertData structure provides a textual description and alert management data.)

5.2.1.2.11 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.2.1.2.12 ProxyAlert (Class)

This class is used as a proxy for alerts existing in all alert modules in the system (including the local service). The complete set of data for each alert is stored in the ProxyAlert, along with its ID and a reference to the Alert object it represents. These proxy alerts allow every alert module service in the system to have some knowledge of every alert in the entire system, for the quickly determining whether a proposed new alert already exists elsewhere in the alert system (and therefore does not need to be redundantly entered into the system again). ProxyAlert implements the Duplicatable interface, so that the ObjectCache can generically be queried to check for duplicates of any other ProxyAlert. This ProxyAlert class is the super class for derived classes for each specialized type of alert in the system, so that type specific data can be stored and accessed for each alert type, and can be queried for comparison for the Duplicatable isDuplicateOf() method.

5.2.1.2.13 ProxyDeviceFailureAlert (Class)

his subclass of ProxyAlert is used to cache DeviceFailureAlert types of alerts. It holds and provides access to data specific to the DeviceFailureAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.2.14 ProxyDuplicateEventAlert (Class)

This subclass of ProxyAlert is used to cache DuplicateEventAlert types of alerts. It holds and provides access to data specific to the DuplicateEventAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.2.15 ProxyEventStillOpenAlert (Class)

This subclass of ProxyAlert is used to cache EventStillOpenAlert types of alerts. It holds and provides access to data specific to the EventStillOpenAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.2.16 ProxyExecuteScheduledActionsAlert (Class)

This subclass of ProxyAlert is used to cache ExecuteScheduledActionsAlert types of alerts. It holds and provides access to data specific to the ExecuteScheduledActionsAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.2.17 ProxyExternalConnectionAlert (Class)

This class is used to carry data about an external connection alert which has been received by the ObjectCache from an AlertModule. Proxy alerts are collected and used by all Alert Modules to aid in de-duping alerts which could be created via multiple Alert Modules.

5.2.1.2.18 ProxyExternalEventAlert (Class)

This class is used to carry data about an external event alert which has been received by the ObjectCache from an AlertModule. Proxy alerts are collected and used by all Alert Modules to aid in de-duping alerts which could be created via multiple Alert Modules.

5.2.1.2.19 ProxyGenericAlert (Class)

This subclass of ProxyAlert is used to cache GenericAlert types of alerts. It holds and provides access to data specific to the GenericAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.2.20 ProxyServiceAlert (Class)

This class is used to carry data about a service alert which has been received by the ObjectCache from an AlertModule. Proxy alerts are collected and used by all Alert Modules to aid in de-duping alerts which could be created via multiple Alert Modules.

5.2.1.2.21 ProxyTollRateAlert (Class)

This class is used to carry data about a toll rate alert which has been received by the ObjectCache from an AlertModule. Proxy alerts are collected and used by all Alert Modules to aid in de-duping alerts which could be created via multiple Alert Modules.

5.2.1.2.22 ProxyTravelTimeAlert (Class)

This class is used to carry data about a travel time alert which has been received by the ObjectCache from an AlertModule. Proxy alerts are collected and used by all Alert Modules to aid in de-duping alerts which could be created via multiple Alert Modules.

5.2.1.2.23 ProxyUnhandedResourcesAlert (Class)

This subclass of ProxyAlert is used to cache UnhandledResourcesAlert types of alerts. It holds and provides access to data specific to the UnhandledResourcesAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.2.24 ServiceAlertData (Class)

This class contains data specific to a ServiceAlert. It's possible that the serviceID could be the null identifier if the watchdog was not able to contact the service at least once.

5.2.1.2.25 TollRateAlertData (Class)

This IDL structure contain data specific to a Toll Rate Alert, e.g., the travel route which no longer has data for its toll rate. (Text in the base AlertData structure provides a textual description and alert management data.)

5.2.1.2.26 TravelTimeAlertData (Class)

This IDL structure contains data specific to a Travel Time Alert, e.g., the travel time limit and the travel time which exceeded the limit. (Text in the base AlertData structure provides a textual description and alert management data.)

5.2.1.2.27 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an UnhandledResourcesAlert.
5.2.2 SequenceDiagrams
None

5.3 Corba Utilities
5.3.1 Class Diagrams
5.3.1.1 EventServiceClasses (Class Diagram)

This diagram shows classes related to the CORBA Event Service as defined in the CHART IDL (not an OMG specification).

[image: image51.emf]ORB«interface»1POA«interface»21EventServiceEventChannelFactory«interface»11EventChannelFactoryImplService«interface»1getServiceIdentificationInfo() : ServiceIdentificationInfogetServiceInfo() : ServiceInfogetServiceStatus() : ServiceStatusgetNetConnectionSite() : StringgetVersion() : ApplicationVersiongetStartTime() : longgetUptime() : longping() : voidresolveTraders(token : byte[])void()setLogLevel(token : byte[], logLevel : short)createChannel(id:ChannelId):EventChannelget_channel_by_id(id:ChannelID):EventChannelgetChannels():ChannelIdSeqshutdown():voidmain(args:String[]):voidactivateAndPublishCHARTService():void

Figure 5‑32. EventServiceClasses (Class Diagram)
5.3.1.1.1 EventChannelFactory (Class)
This is a CORBA interface for the event channel factory - the factory that serves event channels.

5.3.1.1.2 EventChannelFactoryImpl (Class)

This class is the implementation of an EventChannelFactory as defined in the IDL. It manages the event channels as created via the createChannel method.

5.3.1.1.3 EventService (Class)

This class is the main entry point for the event service. It constructs and serves an event channel factory, and publishes itself in the trader as a CHART service.

5.3.1.1.4 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote procedure call mechanism for inter-process communication. The ORB is the basic mechanism by which client applications send requests to server applications and receive responses to those requests from servers.

5.3.1.1.5 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant objects.

5.3.1.1.6 Service (Class)

This interface is to allow remote administration of service applications.

5.3.2 Sequence Diagrams

5.3.2.1 EventService:Initialization (Sequence Diagram)

This diagram shows the processing that takes place to initialize the event service. An event channel factory is created and activated on the persistent POA. LevA 687 adds functionality to activate the EventService itself (which implements the Service CORBA interface) and to publish the Service interface into the local CORBA trader.

[image: image52.emf]AdministratorEventServiceEventServiceORBORBPOAPOAPerstent POA androot POAEventChannelFactoryImplmain()createORBcreatepublish Service in trader

init()createcreateactivate_object_with_id(impl)activate_object_with_id(this)run

get persistent obj idcreate

Figure 5‑33. EventService:Initialization (Sequence Diagram)
5.4 DMS Control Module

5.4.1 Class Diagrams

None.
5.4.2 Sequence Diagrams

5.4.2.1 DMSControlModule:SetConfiguration (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to change the configuration of a DMS. The DMS must be in maintenance mode, the requesting operator must have proper functional rights, and if there is a (maintenance mode) message on the sign from another operations center, the user must have override authority. This method creates a SetDMSConfigCmd (a QueueableCommand) and adds it to the DMS's CommandQueue. The CommandQueue is required since some configuration changes require field communications to the sign, and field communications are relatively slow and can queue up. Requests to communicate with the sign are processed on a first-come, first-served basis. When the CommandQueue is ready, it executes the SetDMSConfigCmd, which calls the setConfigurationImpl method, also shown on this diagram. When the setConfigurationImpl method runs, it checks that the DMS is still in maintenance mode (a previously queued command could have changed it), and that there is no resource conflict (a previously queued command could have written a message from an operator at another operations center). Assuming no problems, the Chart2DMSConfiguration is locked down, and all parameters which need to change are changed. If any of these parameter changes require communications to the sign (e.g., setting the Comm Loss Timeout in an FP9500), a new PortLocator is created using the new parameters. Then, FMS is requested to make the specified change(s). The method handleOpStatus handles and responds to any changes to the operational status of the sign (OK, comms failure, or hardware failure) reported by FMS during this operation. The new configuration is persisted and pushed into the event channel. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user.

[image: image53.emf]R4: will be modified to include

m_defaultJustificationPage

m_interCharacterSpacing

m_ntcipV2Support

R3B3: If necessary,

create the appropriate

PortLocator by checking the

passed in config.

DMSProtocolHndlr

setConfiguration

(token, config, cmdStatus)

log(token, "DMS <name>, "configuration changed")

update("command queued")

Updates CommandStatus

(completed() call)

if necessary.

addCommand(SetDMSConfigCmd)

R3B3:set everything in config except

device location and m_dmsTravInfoMsgConfig.

[resource conflict]

ResourceControlConflict

end synchronize

delete

fmsReleasePort

checkResourceConflict

(token, cmdStatus)

If any changes

require comms to

sign,e.g., for

FP9500, derived class

implementation will

do more, such as this.

DMSControlDBOperationsLogPushEventSupplier

m_dmsConfig:

Chart2DMSConfiguration

CommandStatus

Chart2DMSImpl

Operator

If any changes

actually occured...

Happens if user from

another op ctr has msg

on DMS in maint mode.

CommandQueue executes

command asynchronously.

CommandQueue

DMSEvent

Writes to CommandStatus

if necessary.

SetDMSConfigCmd

PortLocator

PortLocator

completed("success or failure")

push (DMSConfigChanged)

setConfiguration

"set data as requested"

[failure]

[failure]

fmsGetConnectedPort

[not in maint mode]

push(currentStatus)

[no rights]

log

[comm parameter changed]

create

[comm parameter changed]

delete

[not in maint mode]

[change to commLossTimeout requested]

setCommLossTimeout

[not in maint mode]

completed("wrong mode")

synchronized

[no chng]

[no change to existing config]

[no change to existing config]

completed("nothing changes")

update("setting config")

[not in maint mode]

CHART2Exception

[not in maint mode]

completed("wrong mode")

create

[resource conflict]

ResourceControlConflict

checkResourceConflict

(token, cmdStatus)

setConfigurationImpl

[no rights]

completed("no rights")

create "Any" DMSEvent of type DMSConfigChanged

[no rights]

AccessDenied

create

execute

handleOpStatus

(result, cmdStatus)

Figure 5‑34. DMSControlModule:SetConfiguration (Sequence Diagram)

5.5 DMS Protocols

5.5.1 Class Diagrams

5.5.1.1 DMSProtocolsPkg (Class Diagram)

This class diagram shows the protocol handler classes that are related to DMS control.

[image: image54.emf]MODIFIED FOR R4added all functions except setCommLossTimeout()setDefaultFont()setLineSpacing()NTCIPDMSDeviceStatusPCMSProtocolHdlrDataPort«interface»DMSHardwarePageMultiConverterMultiParseListener«interface»DMSProtocolHdlrConfigDMSDeviceStatusFP9500DMSDeviceStatusPCMSDMSDeviceStatusSylviaDMSDeviceStatusTS3001DMSDeviceStatusDMSProtocolHandlerExceptionDMSProtocolHdlr«interface»FP9500ProtocolHdlrFP2001ProtocolHdlrFP1001ProtocolHdlrADDCOProtocolHdlrTS3001ProtocolHdlrSylviaProtocolHdlr*1NTCIPProtocolHdlr111*11111111111111111111char[][] m_pageTextint m_pageOnTimeint m_pageOffTimemessageTxt(text)lineJustification(justify)newLine(pixelSkip)newPage()pageDisplayTime(timeOn, timeOff)unknownTag(tag)parseComplete()multiToPlainText(multi)plainTextToMulti(text, formatter)parseMulti(multi, listener)hardwareMsgToMulti(DMSHardwarePage[] msg):StringperformPixelTest():boolsetCommLossTimeout(int): voidsetConfiguration(DMSProtocolHdlrConfig):voidsetMessage(DataPort port, string MULTI, boolean beacons):voidblank(DataPort):voidgetStatus(DataPort):DMSDeviceStatusreset(DataPort):voidshort m_signTypeSignMetrics m_signMetricsint m_maxPagesint m_dropAddressint m_defLineJustificationint m_defPageOnTimeint m_defPageOffTimeBitMap m_pixelStatusMapbyte[] m_primaryLampStatusMapbyte[] m_secondaryLampStatusMapint m_currentMsgNumFP9500MsgSource m_currentMsgSourceint m_frontPhotocellLightint m_backPhotocellLightint m_topPhotocellLightFP9500LastError m_lastErrorint m_errorValueint m_errorLocint m_pixelOnFailuresCountint m_pixelOffFailuresCountint m_moduleFailuresCountint m_illegalAccessCountFP9500BBRamStatus m_bbRAMStatusFP9500ExtBBRamStatus m_extbbRAMStatusFP9500PWRFailureStatus m_pwrFailStatusFP9500SerialCommStatus m_commPortStatusFP9500CmdMsgStatus m_commandStatusFP9500DisplayStatus m_displayStatusFP9500HWStatus m_hwStatusint m_ledIntensityint m_ttlStateint m_lineVoltsint m_lampLifesend(byte[] data):voidreceive(long initialTimeoutMillis, long interCharTimeoutMillis, long maxReadDurationMillis):byte[]String m_messageMulti;boolean m_beaconState;ShortErrorStatus m_shortErrorStatus;boolean m_batteryBackupPCMSDeviceMobilityPCMSPowerTypePCMSSignTypePCMSSignColorTypePCMSDispModulePCMSSignStatusPCMSGeneratorStatusPCMSGeneratorModeint m_sequenceNobyte m_rateint m_messageSourceint m_dispPriorityint m_signBatteryVoltageint m_engineBatteryVoltageint m_linePowerVoltageint m_photocellReadingin m_brightnessLevelint m_rpmint m_fuelLevelPCMSMessageType m_defMsgTypeint m_defMsgNumint m_lowTempThreshint m_numOfBadDotsint m_ambientTempint m_dispTimeRemainingboolean m_signBlankSylviaSignStatusSylviaControllerStatusSylviaMessageSourceSylviaDNSensorStatusSylviaOBSensorStatusSylviaDNCmdStatusSylviaOBCmdStatusSylviaSensorFunctionStatus m_dnFunctionStatusSylviaSensorFunctionStatus m_obFunctionStatusSylviaShutterServiceStatusboolean m_defaultDisplayActiveboolean m_powerSupplyBadSylviaLocalDisplayMessageint m_localDispMessageNumberperformPixelTest(DataPortUtility):boolsetCentralControlMode(DataPortUtility,int):voidsetCommLossTimeout(int):voidsetDefaultFont(DataPortUtility, int):voidsetDefaultPageJustificationt(DataPortUtility, int):voidsetInterCharacterSpacing(DataPortUtility,int):voidsetLineSpacing(DataPortUtility, int, int):voidgetExtendedStatus(DataPortUtility)BitMap m_pixelStatusMapBitMap m_lampStatusMapTS3001Mode m_currentModeboolean m_programFaultboolean m_commLossStatusboolean m_commandErrorboolean m_pwrFailureboolean m_backupPwrFailureboolean m_primaryLampFailureboolean m_secondaryLampFailureboolean m_signDisplayFailureboolean m_pixelFailureboolean m_illumSystemFailureboolean m_PLCStateTS3001IlluminationMode m_illumControlModeboolean m_pwrRecoveryboolean m_temperatureWarningboolean m_signDriverFailurebyte m_signIllumLevelstring reasonm_dmsControlMode : intm_dmsMsgSourceMode : intm_dmsMessageOwner : Stringm_powerSource : intm_fuelLevel : Stringm_signVolts : Stringm_engineRPM : String

Figure 5‑35. DMSProtocolsPkg (Class Diagram)

5.5.1.1.1 ADDCOProtocolHdlr (Class)

This protocol handler contains the protocol for communicating with an ADDCO portable DMS.

5.5.1.1.2 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a receive method that allows a chunk of all available data to be received. This method prevents callers from having to issue many receive calls to parse a device response. Instead, this receive call returns all available data received within the timeout parameters. The caller can then parse the data within a local buffer. Using this mechanism, device command and response should require only one call to send and one call to receive.

5.5.1.1.3 DMSDeviceStatus (Class)

This class contains data returned by all DMS protocol handlers getStatus() method. DMSs that support more detailed status return a derivation of this class.

5.5.1.1.4 DMSHardwarePage (Class)

This class holds data that specifies the layout of one page of a DMS message on the actual DMS hardware. A two dimensional array that is the same size as the sign's display (rows and columns) specifies the character displayed in each cell, including blank if the cell has no character. This format maps well to the way DMS protocols return the current message being displayed in a status query. This class can then be passed to a MultiConverter object to convert the message into MULTI format.

5.5.1.1.5 DMSProtocolHandlerException (Class)

This exception is thrown when a DMS device fails to respond to a command or a protocol error is detected in the response packet.

5.5.1.1.6 DMSProtocolHdlr (Class)

This interface defines the methods that must be supported by DMS prototocol handlers. Note - some handlers support methods in addition to these standard methods.

5.5.1.1.7 DMSProtocolHdlrConfig (Class)

This class contains the configuration parameters for the DMS Protocol handlers.

5.5.1.1.8 FP1001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an FP1001 DMS.

5.5.1.1.9 FP2001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an FP2001 DMS.

5.5.1.1.10 FP9500DMSDeviceStatus (Class)

This class contains status data that is returned from the FP9500 protocol handler in the getStatus call.

5.5.1.1.11 FP9500ProtocolHdlr (Class)

This protocol handler implements the protocol used to command an FP9500 DMS. The performPixelTest method causes a pixel test to be run on the sign. The status of pixels reported in the getStatus method contains the status since the last time a pixel test was run.

5.5.1.1.12 MultiConverter (Class)

This class provides methods which perform conversions between the DMS MULTI mark-up language and plain text. It also provides a method which will parse a MULTI message and inform a MultiParseListener of elements found in the message.

5.5.1.1.13 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an implementing class to be notified as parsing of a MULTI message occurs. An exemplary use of a MultiParseListener would be the MessageView window which will need to have the MULTI message parsed in order to display it as a pixmap.

5.5.1.1.14 NTCIPDMSDeviceStatus (Class)
This class contains data returned from the NTCIP DMS protocol handler's getStatus() method.

5.5.1.1.15 NTCIPProtocolHdlr (Class)

This object contains the protocol for communication with a NTCIP DMS.

5.5.1.1.16 PCMSDMSDeviceStatus (Class)

This class contains status data that is returned from the Display Solutions PCMS protocol handler in the getStatus call.

5.5.1.1.17 PCMSProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Display Solutions (Winkomatic) Portable DMS.

5.5.1.1.18 SylviaDMSDeviceStatus (Class)

This class contains status data that is returned from the Sylvia protocol handler in the getStatus call.

5.5.1.1.19 SylviaProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Sylvia DMS.

5.5.1.1.20 TS3001DMSDeviceStatus (Class)

This class contains data returned from the TS3001 protocol handler's getStatus() method.

5.5.1.1.21 TS3001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Telespot 3001 series DMS.

5.5.2 Sequence Diagrams

5.5.2.1 NTCIPProtocolHdlr:GetExtendedStatus (Sequence Diagram)

This function returns the current NTCIPDMSStatus. The NTCIPDMSImpl controls the entire task and reports its procress and any exceptions/errors vai a CommandStatus. First getExtendedStatus checks the access rights of the caller. If the caller does not have the proper rights AccessDenied is thrown. It then checks to see if the DMS is in maintanence mode if not a CHART2Exception is thrown. Next the function checks to see if the current time is greater or equal to m_lastSuccessfulPollTimeSecs + STALE_STATUS_MAX_AGE_SECS. If this condition fails the current status is stale. If there is no current NTCIPDMSStatus or it is stale , a new one is retrieved synchronously and then returned. The function creates a PollDMSMowCmd command and then adds it to the command queue. It then waits for the command to complete. The command is excuted and calls pollNowImpl() which uses the NTCIPPotocolHdlr.getStatus() to get the status from the DMS. If any exception occurs while getStatus() is executing the NTCIPPotocolHdlr throws a DMSProtocolHandlerException. The failure is reported using the CommandStatus and a CHART2Exception is thrown. If the command completes successfully CommanStatus complete OK is reported and the NTCIPDMSStatus is returned.
[image: image55.emf]checkResourceConflict(token, cmdStat)create[resource conflict]ResourceControlConflict[not in maint mode]completed("wrong mode")[no rights]completed("no rights")completed(completion code)timedout or bad responce]DMSProtocolHandlerExceptionif time since last poll plus statusmax age <= current time create PollDMSNowCmd and use cmd.wait() to wait for command tocomplete synchronously.devStatuspollNowImpl()executeORBNTCIPDMSImplThis method is used inmaintenance mode only. CommandStatusUpdates cmdStatif conflict found(completed() call).CommandQueueTokenManipulatorPollDMSNowCmdOperationsLoggetExtendedStatus(token,msg, cmdStat)update("command queued")[no rights]log(token, "unauth. attempt to get extended status")addCommand(PollDMSNowCmd)[not in maint mode]CHART2Exception[no rights]AccessDeniedcheckAccess(token)[if command fails or exception thrown]CHART2ExceptionNTCIPProtocolHdlrNTCIPDMSStatus devStatus = getStatus()

Figure 5‑36. NTCIPProtocolHdlr:GetExtendedStatus (Sequence Diagram)

5.5.2.2 NTCIPProtocolHdlr:PerformPixelTest (Sequence Diagram)

This sequence shows the processing involved in running a pixel test on the NTCIP device. A PerformPixelTestCommand is created if actor has the proper rights and the DMS is in maintanence mode. The command is added to the command queue. The command is then asynchronously executed calling performPixelTestImpl on the NTCIPImpl. performPixelTestImpl gets a port that is used by the NTCIPPotocolHdlr to send the pixel test command to the sign. A command status is used to update the process of the pixel test as it happens and when it completes.

[image: image56.emf]OperationsLogNTCIPProtocolHdlrCommandQueue executes

command asynchronously.

performPixelTest(token,msg, cmdStat)[no rights]log(token, "unauth. attempt perform pixel test")addCommand(PerformPixelTestCommand)

[resource conflict]

ResourceControlConflict

[not in maint mode]completed("wrong mode")[no rights]AccessDeniedcheckAccess(token)execute

[timedout or bad response]

DMSProtocolHandlerException

DATAPortfmsGetConnectedPort()

fmsPerfPixTestViaPort(port, cmdStat)

send(pixel test)

send

response = receive()

receive()

completed(completionCode)

port = getConnectedPort()

ORBNTCIPDMSImplThis method is used inmaintenance mode only. CommandStatusUpdates cmdStatif conflict found(completed() call).CommandQueueTokenManipulatorPerformPixelTestCommand

DataPortWrapperupdate("command queued")

checkResourceConflict(token, cmdStat)create

[not in maint mode]CHART2ExceptionperformPixelTestImpl

performPixelTest(port)

[no rights]completed("no rights")

Figure 5‑37. NTCIPProtocolHdlr:PerformPixelTest (Sequence Diagram)

5.5.2.3 NTCIPProtocolHdlr:SetCentralControlMode (Sequence Diagram)

setCentralControlMode creates a SetCentralControlModeCmd to asynchronously command the DMS control mode to "central" if the DMS is in maintanence mode.

[image: image57.emf][timedout or bad response]

DMSProtocolHandlerException

ORBNTCIPDMSImplThis method is used inmaintenance mode only. CommandStatusUpdates cmdStatif conflict found(completed() call).CommandQueueTokenManipulatorSetCentralControlModeCmdOperationsLogCommandQueue executescommand asynchronously.NTCIPProtocolHdlrsetCentralControlMode(token,msg, cmdStat)update("command queued")[no rights]log(token, "unauth. attempt set central control mode")checkResourceConflict(token, cmdStat)addCommand(SetCentralControlModeCmd)create[resource conflict]ResourceControlConflict[not in maint mode]completed("wrong mode")[no rights]completed("no rights")setCentralControlModeImpl

execute[not in maint mode]CHART2Exception[no rights]AccessDeniedcheckAccess(token)completed(completion code)

setCentralControlMode()

Figure 5‑38. NTCIPProtocolHdlr:SetCentralControlMode (Sequence Diagram)

5.5.2.4 NTCIPProtocolHdlr:SetMessage (Sequence Diagram)

This sequence diagram shows the steps involved in setting a message on a NTCIP DMS sign. fmsSetMsgViaPort first updates the command status with the message "communicating with sign". dmsMsgToMulti() is then called. If an exception occurs as a result of this call the function reports the failure via the CommandStatus and throws an CHART2Exception.Then setMessage() is called on the NTCIPProtocolHdlr. setMessage() calls various functions to complete the task. It first sets message defaults based on parameters contained in the protocol handler's configuration object. If the sign is Online it forces the DMS into central control mode. It then sets the default font, line spacing, page justification, and inter-character spacing using their respective functions. Any exception throw by these functions is caught and the command status is updated and a CHART2Exception is thrown. Any other exceptions thrown by helper function is return to the calling object as a CHART2Exception after updating the command status as failed. Upon completion of setMessage the commad status is set to completed successfully.

[image: image58.emf][if any exception]DMSProtocolHandlerException[if any exception]DMSProtocolHandlerExceptionsetPageJustification(dataPortWrapper, justification)[failed to set central control mode]CHART2Exceptioncompleted(FAILED)completed(FAILED)setDefaultFont(dataPortWrapper, font)[if any exception]DMSProtocolHandlerException[if any exception]DMSProtocolHandlerException[if any exception]DMSProtocolHandlerExceptionsetLineSpacing(dataPortWrapper, font, lineSpacingsetInterCharacterSpacing(dataPortWrapper, numberOfPixels)completed(FAILED)NEW FOR R4dmsMsgtoMulti(dmsMsg)truecompleted(FAILED)completed(FAILED)setMessage execution[if any exception]DMSProtocolHandlerException[if OnLine]setCentralControlMode[failed to set page justification]CHART2Exception[failed to set inter-char spacing]CHART2Exceptionsuper.handleOpStatus()setMessage(dataPortWrapper, multiMsg,dmsMsg. beaconState)[any exception]CHART2Exceptioncomplete(OK or FAILED)update("communicating with sign") adjustMultiTagsCaseForSign(multiMsg)CHART2ExceptionNTCIPDMSImplCommandStatus[failed to set line spacing]CHART2Exception[failed to set default font]CHART2ExceptionDataPortWrapperNTCIPProtocolHdlrcomplete("failed")fmsSetMsgViaPort(port, dmsMsg,desc,cmdStat,complete) dmsMsgtoMulti(dmsMsg)

Figure 5‑39. NTCIPProtocolHdlr:SetMessage (Sequence Diagram)
5.6 System Interfaces

5.6.1 Class Diagrams

5.6.1.1 AlertManagement (Class Diagram)

This class diagram shows the system interfaces that make the AlertManagement capability of CHART2 system.

[image: image59.emf]1New Aug 09

This is a struct, but

can't get tau to present

struct as a stereotype option

ServiceAlert

«interface»ServiceAlertData

ServiceAlertType

«enumeration»

11

11

11

MODIFIED FOR R3B3.Added alert types and factory constructorsfor the four new R3B3 alerts.ExternalConnectionAlert«interface»ExternalEventAlert

«interface»

TollRateAlert

«interface»

TravelTimeAlert

«interface»

1111

11

11

ExternalConnectionAlertData«struct»ExternalEventAlertData

«struct»

TravelTimeAlertData

«struct»

TollRateAlertData

«struct»

AlertFactory«interface»UniquelyIdentifiable«interface»AlertState«enumeration»AlertCreationResult«datatype»AlertTypeDiabledException«exception»11111ActionData is a union, withActionType as the discriminator.OpenEventActionData is the onlypossible type.ExtendedAlertData«datatype»AlertData«datatype»AlertHistory«datatype»AlertAction«enumeration»GenericAlert«interface»DeviceFailureDeviceType«enumeration»DeviceFailureAlert«interface»DeviceFailureAlertData«struct»DuplicateEventAlert«interface»DuplicateEventAlertData«struct»EventStillOpenAlert«interface»EventStillOpenAlertData«struct»UnhandledResourcesAlert«interface»UnhandledResourcesAlertData«datatype»1111111111*111111111ExecuteScheduledActionsAlert«interface»ExecuteScheduledActionsAlertDataActionData«union»*1Alert«interface»1

NEW FOR R3B3.11

1AlertEventType«enumeration»AlreadyAtMaxVisibilityException«exception»MODIFIED FOR R3B3.Added failureType.1

1

DeviceFailureType«enumeration»1

1

AlertType«enumeration»AlertInfo«datatype»getAlerts() : AlertInfo[]getOpenAlertIds() : Identifier[]createDeviceFailureAlert(token : AccessToken, deviceId : Identifier, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateDuplicateEventAlert(token : AccessToken, olderEventId : Identifier, newerEventId : Identifier, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateEventStillOpenAlert(token : AccessToken, eventId : Identifier, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateGenericAlert(token : AccessToken, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateUnhandledResourceAlert(token : AccessToken, deviceId : Identifier, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateExecuteScheduledActionsAlert(token : AccessToken, scheduleId:Identifier, execActionDataList:ActionData[] , desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateExternalConnectionAlert(token : AccessToken, extConnId : Identifier, isWarning : boolean, changeTimeSecs: long, confirmTimeSecs: long, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateExternalEventAlert(token : AccessToken, eventId : Identifier, firstAlertRuleMetId : Identifier, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateTollRateAlert(token : AccessToken, routeId : Identifier, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateTravelTimeAlert(token : AccessToken, routeId : Identifier, travelTimeSecs: int, travelTimeEffSecs: long, travelTimeAlertLimitSecs: int, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultgetID()getName()AlertAddedAlertChangedAlertDeletedALERT_TYPE_GENERIC_ALERTALERT_TYPE_UNHANDLED_RESOURCESALERT_TYPE_DEVICE_FAILUREALERT_TYPE_DUPLICATE_EVENTALERT_TYPE_TRAFFIC_EVENT_STILL_OPENALERT_TYPE_EXECUTE_SCHEDULED_ACTIONSALERT_TYPE_EXTERNAL_CONNECTIONALERT_TYPE_EXTERNAL_EVENTALERT_TYPE_TOLL_RATEALERT_TYPE_TRAVEL_TIMEgetType(): AlertTypegetData() : AlertDatagetExtendedAlertData() : ExtendedAlertDataaddComment(token : AccessToken, comment : string) : voidescalate(token : AccessToken, comment : string) : voidaccept(token : AccessToken) : voidacceptWithDetails(token : AccessToken, reminderTimeMsec : unslgned long, comment : string) : voidsetAcceptTimeout(AccessToken token, reminderTimeMsec : unslgned long, comment : string) : voidunaccept(token : AccessToken) : voiddelay(token : AccessToken) : voiddelayWithDetails(token : AccessToken, reminderTimeMsec : unslgned long, comment : string) : voidsetDelayTimeout(AccessToken token, reminderTimeMsec : unslgned long, comment : string) : voidundelay(token : AccessToken) : voidclose(token : AccessToken, comment : string) : voidalertId : IdentifiertheAlert : Alerttype : AlertTypeextAlertData : ExtendedAlertDatacreationWarningMessage : stringreason : stringreason : stringid : Identifiertype : AlertTyperef : AlertALERT_STATE_NEWALERT_STATE_ACCEPTEDALERT_STATE_DELAYEDALERT_STATE_CLOSEDgetFailedDeviceId() : IdentifiergetDeviceType() : DeviceFailureDeviceTypegetDeviceFailureAlertData() : DeviceFailureAlertDatagetNewerEventId() : IdentifiergetOlderEventId() : IdentifiergetDuplicateAlertData() : DuplicateEventAlertDatagetEventId() : IdentifiergetEventStillOpenAlertData() : EventStillOpenAlertDataalertId: Identifierdescription: stringtype: AlertTypedescription: stringstate: AlertStateresponsibleUser: stringresponsibleCenterInfo: OpCenterInfoalertCreationTime: datetimealertCurrentVisibility: AlertManagementGroup[]alertNextVisibility: AlertManagementGroup[]nextActionTimeMsec : unsigned longalertLastStateChangeTime: unsigned longalertHistory : AlertHistory[]getOpCenterId() : IdentifiergetUnhandledResourcesAlertData() : UnhandledResourcesAlertDataFAILURE_TYPE_COMM_FAILFAILURE_TYPE_HW_FAILgetExecuteScheduledActionsAlertData() : ExecuteScheduledActionsAlertDataDEVICE_TYPE_DMSDEVICE_TYPE_TSSbaseAlertData: AlertDataeventId: IdentifertypeOfFailedDevice: DeviceFailureDeviceTypefailureType: DeviceFailureTypegetExternalConnectionAlertData(): ExternalConnectionAlertData

baseAlertDate: AlertDatanewerEvent: IdentifierolderEvent: Identifiertimestamp: unsigned longstate: AlertStateaction: AlertActionopCenterId: Identifieruser: stringuserComment: stringnextActionTimeMsec : unsigned longaddedVisibility: AMGListgetExternalEventAlertData(): ExternalEventAlertData

baseAlertData: AlertDataeventId: IdentiferALERT_ACTION_CREATEALERT_ACTION_ACCEPTALERT_ACTION_UNACCEPTALERT_ACTION_DELAYALERT_ACTION_UNDELAYALERT_ACTION_CLOSEALERT_ACTION_ADD_COMMENTALERT_ACTION_ESCALATEALERT_ACTION_EDITgetTollRateAlertData(): TollRateAlertData

baseAlertData: AlertDataopCenterId: IdentifierbaseAlertData: AlertDatascheduleId: IdentifierschedActions: ActionData[]union on AlertTypecontains appropriate type-specific AlertData structgetTravelTimeAlertData(): TravelTimeAlertData

baseAlertData: AlertDataextConnId: IdentifierisWarning: boolean

alertStatusChangeTimeSecs: long

alertStatusConfirmTimeSecs: long

getServiceAlertData():ServiceAlertData

baseAlertData: AlertData

extEventId: Identifier

firstAlertRuleMetId: Identifier

discriminator: ActionTypeopenEventActionData: OpenEventActionDatabaseAlertData: AlertData

TravelRouteId: Identifier

baseAlertData: AlertData

travelRouteId: Identifier

alertedTravelTimeSecs: int

alertedTravelTimeEffSecs: long

travelTimeAlertLimitSecs: int

baseAlertData:AlertData

serviceAlertType:ServiceAlertType

watchdogID:Identifier

serviceID:Identifier

alertedStatusCode:ServiceStatusCode

alertedStatusChangeTime:Timestamp2

SERVICE_ALERT_FAILURE

SERVICE_ALERT_RESTART

Figure 5‑40. AlertManagement (Class Diagram)
5.6.1.1.1 ActionData (Class)
This IDL union holds the data used to describe a schedule action. It has been designed as a union discriminated by the enumeration ActionType to support schedule actions to be determined in future releases of CHART. Currently the only supported variant is the OpenEventAction.

5.6.1.1.2 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage an alert.

5.6.1.1.3 AlertAction (Class)

This IDL enumeration defines the actions that can be done to an Alert.

5.6.1.1.4 AlertCreationResult (Class)

This IDL struct represents the data that will be returned as a result of an alert creation using the AlertFactory calls. It includes: alert id, alert CORBA reference, alert type, extended alert data, and a warning string used to describe non-fatal conditions when creating the alert.

5.6.1.1.5 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.6.1.1.6 AlertEventType (Class)

This IDL enumeration defines the types of CORBA Events supported in the AlertModule. Its primary use is as a discriminator value used when handling AlertEvents. These can either be Alert Added, Changed, or Deleted.

5.6.1.1.7 AlertFactory (Class)

This IDL interface contains the operations available for an Alert Factory. The AlertFactory is responsible for creating alerts and storing alert information on the alerts that it created.

5.6.1.1.8 AlertHistory (Class)

This IDL struct contains information used to describe an action being done to an alert. A collection of these structs represents the history of the alert from beginning to end.

5.6.1.1.9 AlertInfo (Class)

This IDL struct contains information about an Alert in the system. Its primary use is to be returned as part of a list of AlertInfo objects in response to an AlertFactory's getAlerts() call.

5.6.1.1.10 AlertState (Class)

AlertState is an IDL enumeration of the four defined states for an Alert.

5.6.1.1.11 AlertType (Class)

AlertType is an IDL enumeration of the five Alert types.

5.6.1.1.12 AlertTypeDiabledException (Class)

This exception is thrown by the AlertFactory create operations if the alert type being created is disabled within the system. (Server-side clients can ignore this alert; GUI-side clients may wish to display this to the user.)

5.6.1.1.13 AlreadyAtMaxVisibilityException (Class)

This exception is thrown by the Alert escalate() operation if the alert is already at maximum visibility (no additional AMGs are configured in the backup set(s) of the AMG(s) in the current visibility list). Clients may wish to try escalation after receipt of this exception (or at any time the nextVisibility array is empty), in case an administrator may have modified the backup set of AMGs in the meanwhile.

5.6.1.1.14 DeviceFailureAlert (Class)

This IDL interface contains operations specific to a Device Failure alert. This interface is implemented by classes representing DeviceFailureAlerts in the Chart2 System.

5.6.1.1.15 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.6.1.1.16 DeviceFailureDeviceType (Class)

The DeviceFailureDeviceType is an enumeration of the possible device failure types supported in a device failure alert.

5.6.1.1.17 DeviceFailureType (Class)

This enumeration lists the possible types of device failures which can be communicated by a device failure alert.

5.6.1.1.18 DuplicateEventAlert (Class)

This IDL interface contains operations specific to a Duplicate Event alert. This interface is implemented by classes representing DuplicateEventAlertsDevice in the Chart2 System.

5.6.1.1.19 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.6.1.1.20 EventStillOpenAlert (Class)

This IDL interface contains operations specific to a Event Still Open alert. This interface is implemented by classes representing EventStillOpenAlerts in the Chart2 System.

5.6.1.1.21 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.6.1.1.22 ExecuteScheduledActionsAlert (Class)

This IDL interface contains operations specific to aExecute Scheduled Actions alert. This interface is implemented by classes representing ExecuteScheduledActionsAlert in the Chart2 System.

5.6.1.1.23 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an ExecuteScheduledActionsAlert.

5.6.1.1.24 ExtendedAlertData (Class)

ExtendedAlertData is a union of the four type specific alert datatypes: DeviceFailureAlertData, DuplicateEventAlertData, EventStillOpenAlertData, and UnhandledResourceAlertData. Note that the GenericAlert does not include any type specific data. The AlertType enumeration is used as the discriminator over the data in this union.

5.6.1.1.25 ExternalConnectionAlert (Class)

This IDL interface contains operations specific to an External Connection Alert, which indicates trouble with a connection between CHART and an external system.

5.6.1.1.26 ExternalConnectionAlertData (Class)

This IDL structure contains data specific to an External Connection Alert, e.g., the ID of the interface which is having trouble and a flag indicating whether the connection is in failure or warning status, the timestamp it transitioned. (The GUI displays additional data which is best acquired from the GUI's object cache.) (Text in the base AlertData structure provides a textual description and alert management data.)

5.6.1.1.27 ExternalEventAlert (Class)

This IDL interface contains operations specific to an External Event Alert, which indicates an event has arrived from an external system which satisfies criteria a CHART administrator has defined to flag an external event as significant enough to warrant this alert.

5.6.1.1.28 ExternalEventAlertData (Class)

This IDL structure contains data specific to an External Event Alert, e.g., the ID of the event and the ID of the first rule found that requested an alert be sent. (Text in the base AlertData structure provides a textual description and alert management data.)

5.6.1.1.29 GenericAlert (Class)

This IDL interface contains operations specific to a Generic alert. This interface is implemented by classes representing GenericAlerts in the Chart2 System.

5.6.1.1.30 ServiceAlert (Class)

This is a CORBA interface for alerts that pertain to CHART services.

5.6.1.1.31 ServiceAlertData (Class)

This class contains data specific to a ServiceAlert. It's possible that the serviceID could be the null identifier if the watchdog was not able to contact the service at least once.

5.6.1.1.32 ServiceAlertType (Class)

This enumration lists the types of ServiceFailure alerts that may occur. FAILURE indicates the alert was created due to the service being detected as failed for longer than a configurable threshold (configurable in the watchdog config), and RESTART indicates the alert is created to indicate the service is being automatically restarted (due to the service being failed for longer than the restart timeout configured for the service in the watchdog).

5.6.1.1.33 TollRateAlert (Class)

This IDL interface contains operations specific to an Toll Rate Alert, which indicates a travel route which had a currently active toll rate no longer does in a more recently received toll rate update document from a toll rate provider. (This alert is not sent if a toll rate expires due to an absence of any current toll rate document -- such an event would have triggered one external connection alert and does not need to also trigger a multitude of individual toll rate alerts as well.)

5.6.1.1.34 TollRateAlertData (Class)

This IDL structure contain data specific to a Toll Rate Alert, e.g., the travel route which no longer has data for its toll rate. (Text in the base AlertData structure provides a textual description and alert management data.)

5.6.1.1.35 TravelTimeAlert (Class)

This IDL interface contains operations specific to an Travel Time Alert, which indicates the travel time associated with a travel route is high enough to warrant this alert.

5.6.1.1.36 TravelTimeAlertData (Class)

This IDL structure contains data specific to a Travel Time Alert, e.g., the travel time limit and the travel time which exceeded the limit. (Text in the base AlertData structure provides a textual description and alert management data.)

5.6.1.1.37 UnhandledResourcesAlert (Class)

This IDL interface contains operations specific to a Unhandled Resources alert. This interface is implemented by classes representing UnhandledResourceAlerts in the Chart2 System.

5.6.1.1.38 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an UnhandledResourcesAlert.

5.6.1.1.39 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.6.1.2 Common3 (Class Diagram)

[image: image60.emf]ServiceIdentificationInfo

1

The use of the service name as an identification key allows

us to avoid using service IDs (which can sometimes be wiped out).

To avoid services with duplicate names, only services from the local

trading service will be used, and service on the same computer as

the watchdog must have unique names.

The service name is not part of the

configuration because it's used

as an identification key and is a

non-settable field

ServiceStatus

ServiceInfo

UniquelyIdentifiable

«interface»1*

ShellCommandMonitoredServiceConfig

QueriedServiceInfo

ServiceStatusCode

MonitoredServiceStatus

1*

1*1*

0..1*

present after first

successful query

0..**

stop

*

0..*

*

auto-restart

Service

«interface»

start

*

0..*

MonitoredServiceInfo

WatchdogService

«interface»

0..*

1

restart

getID()

getName()

getServiceIdentificationInfo() : ServiceIdentificationInfo

getServiceInfo() : ServiceInfo

getServiceStatus() : ServiceStatus

getNetConnectionSite() : String

getVersion() : ApplicationVersion

getStartTime() : long

getUptime() : long

ping() : void

resolveTraders(token : byte[])void()

setLogLevel(token : byte[], logLevel : short)

getMonitoredServicesInfo(token : byte[]) : MonitoredServiceInfo[]

startService(token : byte[], serviceName : String) : void

stopService(token : byte[], serviceName : String) : void

restartService(token : byte[], serviceName : String) : void

pingAllMonitoredServices(token : byte[]) : void

pingService(token : byte[], serviceName : String) : void

serviceIDInfo : ServiceIdentificationInfo

status : ServiceStatus

serviceID :byte[]

serviceName : String

connectionSite : String

versionInfo : ApplicationVersion

serviceName : String

serviceConfig : MonitoredServiceConfig

serviceStatus : MonitoredServiceStatus

serviceStopCommands : ShellCommand[]

serviceStartCommands : ShellCommand[]

serviceRestartCommands : ShellCommand[]

serviceAutoRestartCommands : ShellCommand[]

notifyOnFailure : boolean

failureNotificationThresholdSec : long

failureNotificationGroupID : String

alertOnFailure : boolean

failureAlertThresholdSec : long

failureAlertOpCenterID : byte[]

failureAlertOpCenterName : String

autoRestartOnFailure : boolean

autoRestartThresholdSec : long

notifyOnAutoRestart : boolean

autoRestartNotificationGroupID : String

alertOnAutoRestart : boolean

autoRestartAlertOpCenterID : byte[]

autoRestartAlertOpCenterName : String

startTime : long

uptimeSec : long

curLogLevel : short

javaAvailableHeapKB : long

statusCode : ServiceStatusCode

detailedStatus : String[]

statusCode : ServiceStatusCode

lastStatusCodeChangeTime : long

lastQueryAttemptTime : long

queriedServiceInfo : QueriedServiceInfo[]

detailedStatus : String[]

numQueriesAttemptedSinceWatchdogStartup : long

numQueryFailuresSinceWatchdogStartup : long

numAutoRestartsSinceWatchdogStartup : int

currentFailureNotificationAttemptTime : long

currentFailureAlertAttemptTime : long

currentFailureAutoRestartAttemptTime : long

commandLine : String

allowedReturnCodes : int[]

abortSubsequentCommandsOnFailure : boolean

postCommandDelaySec : int

SERVICE_OK

SERVICE_FAILED

SERVICE_STATE_UNKNOWN

serviceRef : Service

theServiceInfo : ServiceInfo

serviceInfoQueryTime : long

responseTimeMillis : long

Figure 5‑41. Common3 (Class Diagram)
5.6.1.2.1 MonitoredServiceConfig (Class)

Configuration information for a service monitored by a Watchdog service.

5.6.1.2.2 MonitoredServiceInfo (Class)

Contains all information pertaining to a service monitored by the Watchdog service.

5.6.1.2.3 MonitoredServiceStatus (Class)

Information about the status of a service monitored by a Watchdog service.

5.6.1.2.4 QueriedServiceInfo (Class)

This structure stores information about a successfully queried service.

5.6.1.2.5 Service (Class)

This interface is to allow remote administration of service applications.

5.6.1.2.6 ServiceIdentificationInfo (Class)

This structure contains identification information for a service.

5.6.1.2.7 ServiceInfo (Class)

This structure contains information about a Service - the constant data and the status.

5.6.1.2.8 ServiceStatus (Class)

This structure contains information about the current status of a Service.

5.6.1.2.9 ServiceStatusCode (Class)

Status codes for services.

5.6.1.2.10 ShellCommand (Class)

Represents settings for calling the operating system to execute a shell command.

5.6.1.2.11 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.6.1.2.12 WatchdogService (Class)

The Watchdog service interface. The Watchdog monitors other services found in the local trader and can perform commands on those services.

5.6.1.3 DMSControl (Class Diagram)

This Class Diagram shows the CORBA system interface classes and methods used to manipulate DMS services within the CHART system.

[image: image61.emf]DMSEventType isDMSModelChangedDMSEventType isDMSTravInfoMsgCfgChangedDMSEventType isDMSAdded orDMSConfigChangedDMSEventType isCurrentDMSStatusNTCIPDeviceComponentInformation«struct»NTCIPDMS«interface»ExternalDMSFactory«interface»DMSInfo«struct»DMSType«struct»11DMSEventType isDMSModelChanged1111DMSTravInfoMsgConfigEventInfo«struct»DMSEventType isDMSTravInfoMsgCfgChanged11IPPortLocationData«struct»1111HHMMRange«typedef»0..*1ExternalDMS«interface»111DMSTravInfoMsgState«enumeration»DMSTravInfoMsgStatus«struct»1TravelRouteConsumer«interface»DMSTravInfoMsgConfig10..*UniquelyIdentifiable«interface»ArbQueueEntry«valuetype»DMSArbQueueEntry«valuetype»CommunicationMode«enumeration»ShortErrorStatus«type»MULTIString«type»DMSConfiguration«valuetype»Chart2DMSConfiguration«valuetype»DMSStatus«valuetype»Chart2DMSStatus«valuetype»DMS«interface»Chart2DMS«interface»Chart2DMSFactory«interface»SharedResourceManager«interface»HARMessageNotifier«interface»SharedResource«interface»DMSFactory«interface»DMSList«type»DMSMessage«valuetype»DMSStatusEventInfo«struct»SignMetrics«typedef»FontMetrics«typedef»DMSConfigurationEventInfo«struct»BeaconTypeValues«interface»SignTypeValues«interface»ResponsePlanItemDataDMSRPIDataHARNotifierArbQueueEntry«valuetype»Message«interface»UniquelyIdentifiable«interface»GeoLocatable«interface»FP9500DMS«interface»FP9500DMSStatus«valuetype»MessageQueueNetworkConnectionSite«type»MULTIParseFailure«exception»DMSEvent«typedef»DMSEventType«enumeration»ArbitrationQueue«interface»CommEnabled«interface»DMSModelID«enumeration»11111DMSEventType isDMSAdded orDMSConfigChanged111111111**MODIFIED FOR R4. added: m_defaultJustificationPage m_interCharacterSpacing11*1111DMSEventType isCurrentDMSStatus**11***1*11111111ResponsePlanItemTarget«interface»NEW FOR R4NTCIPDMSStatus«valuetype»MODIFIED FOR R4Removed:setDefaultFont()setDefaulLineSpacing()Added:getExtendedStatus()performPixelTest()setCentralControlMode()OperationalStatus«enumeration»SignType«type»BeaconType«type»PlanItemDataDMSPlanItemData111111EntryOwner«interface»111*1*1111DMSTravInfoMsg«struct»theDMS: DMSdmsID: IdentifierdmsFactoryID : IdentifierdmsType: DMSTypeconfig: DMSConfigurationstatus: DMSStatusCHART_DMSEXTERNAL_DMSDMSEventType <discriminator>Identifier dmsID - forDMSDeletedorDMSConfigurationEventInfo dmsConfigInfoorDMSStatusEventInfo statusInfodmsID: Identifierstatus: DMSStatusDMSAddedDMSDeletedCurrentDMSStatusDMSConfigChangedDMSTravInfoMsgCfgChangeddmsID: Identifierconfig: DMSTravInfoMsgConfigm_ipAddress:stringm_tcpPortNumber:intDMS_ADDCODMS_FP1001DMS_FP2001DMS_FP9500DMS_PCMSDMS_SYLVIADMS_TS3001DMS_NTCIPother = 1bos = 2cms = 3vmsChar = =4etc.theDMS: DMSdmsID: Identifierconfig: DMSConfigurationshort fontHeightshort characterWidthother = 1none = 2oneBeacon = 3twoBeaconSyncFlash = 4etc.long vmsSignHeightPixelslong vmsSignWidthPixelsshort vmsCharacterHeightPixelsshort vmsCharacterWidthPixelsfactory createDMSConfiguration() : DMSConfigurationm_name: stringm_dmsLocation: ObjectLocationm_dmsSignType: SignTypem_signMetrics: SignMetricsm_fontMetrics: FontMetricsm_pages: longm_dmsTimeCommLoss: longm_dmsBeaconType: BeaconTypem_defaultJustificationLine: longm_defaultPageOnTime: longm_defaultPageOffTime: longm_defaultFontNumber: shortm_defaultLineSpacing: shortm_defaultJustificationPage: shortm_interCharacterSpacing: shortgetNetworkConnectionSite():NetworkConnectionSitefactory createChart2DMSConfiguration() : Chart2DMSConfigurationm_dmsModelID: DMSModelIDm_owningOrgID: Identifierm_networkConnectionSite: NetworkConnectionSitem_pollingEnabled: booleanm_pollIntervalMinutes: longm_portLocationData: PortLocationData[]m_ipportData: IPPortLocationData[]m_commPortConfig: CommPortConfigm_devicePhoneNumber: stringm_deviceDropAddress: longm_communityString: stringm_deviceResponseTimeout: longm_shazamMessage: DMSMessagem_associatedHAR: HARm_associatedHARID: Identifierm_enableDeviceLog: booleanm_commFailAlertOpCenter: OpCenterInfom_hwFailAlertOpCenter: OpCenterInfom_commFailNotifGroup: NotificationGroupInfom_hwFailNotifGroup: NotificationGroupInfom_dmsTravInfoMsgConfigtakeOffline(AccessToken, CommandStatus):voidputOnline(AccessToken, CommandStatus):voidputInMaintenanceMode(AccessToken, CommandStatus):voidgetCommMode() :CommunicationModerouteTravTimeStatsUpdated(routeId: Identifier, timeData: RouteTravTimeStats): voidrouteTollRouteStatsUpdated(routeId: Identifier, tollData: RouteTollRateStats): voidrouteUpdatesCompleted(): voidrouteDisplayConfigUpdated(routeId: Identifier, config: TravelRouteDisplayConfig): voidrouteDeleted(routeId: Identifier): voidblankSign(AccessToken token, CommandStatus status) : voidgetConfiguration(AccessToken token) : DMSConfigurationgetStatus() : DMSStatusisBlank() : booleanpollNow(AccessToken token, CommandStatus status) : voidremove(AccessToken token) : voidresetController(AccessToken token, CommandStatus status) : voidsetConfiguration(AccessToken token, DMSConfiguration config, CommandStatus status) : voidsetMessage(AccessToken token, DMSMessage message, CommandStatus status) : voidsetLocation(token:Accesstoken, location:ObjectLocation):voidaddEntry(token: AccessToken, level: ArbQueuePriorityLevel, entry: ArbQueueEntry):voidremoveEntriesForOwner(token: AccessToken, ownerID: Identifier):voidremoveEntries(token: AccessToken, keys: ArbQueueEntryKeyList):voidchangePriority(token: AccessToken, ownerName: string, key: ArbQueueEntryKey, priority: double):voidgetEntries():ArbQueueEntryListgetEntry(key: ArbQueueEntryKey):ArbQueueEntrygetEntryDescriptions():ArbQueueEntryDescListforceEvaluation(token: AccessToken):voidm_startHour:bytem_startMin:bytem_endHour:bytem_endMin:bytevalidate(ArbQueueEntryKey entryKey):booleantravInfoMsgId: IdentifiertemplateId: IdentifierrouteIdList: Identifier[]autoRowPositioning: booleangetDMSID() : IdentifiersetDMS(DMS, Identifier) : voidgetMessageID(): IdentifiersetMessage (StoredMessage, Identifier) : voidfactory createDMSPlanItemData():DMSPlanItemDataDMS m_dmsIdentifier m_dmsIDStoredMessage m_storedMsgIdentifier m_storedMsgIDm_travelTimeQueueLevel: ArbQueuePriorityLevelm_tollRateQueueLevel: ArbQueuePriorityLevelm_relatedRoutes: Identifier[]m_travInfoMsgList: TravelerInfoMsg[]m_overrideDefaultSchedule: booleanm_enabledSpecificTimes: booleanm_customSchedule: HHMMRange[]removeCHART2DMS(token: AccessToken): voidchangeModelType(token: AccessToken, newModelID: DMSModelID, cmdStat: CommandStatus): voidsetTravInfoMsgConfig(token: AccessToken, msgConfig: DMSTravInfoMsgConfig): voidsetTravInfoMsgEnabledFlag(travInfoMsgId: Identifier, enableFlag: boolean): voidsetQueueLevels(AccessToken,travelTimeQueueLevel:ArbQueuePriorityLevel, tollRateQueueLevel:ArbQueuePriortyLevel) : voidsetTravelTimeShcedule(AccessToken, useCustomSchedule:boolean,useSpecificTime:boolean, ranges:HHMMRangeList) : voidsetRelatedRoutes(AccessToken,Identifier) : voidaddDMSTravInfoMsg(AccessToken,DMSTravInfoMsg) : voidmodifyDMSTravInfoMsg(AccessToken,DMSTravInfoMsg) : voidremoveDMSTravInfoMsg(AccessToken,Identifier) : voidactivateHARNotice(AccessToken, ArbQueueEntryIndicator, TrafficEventList, CommandStatus):voiddeactivateHARNotice(AccessToken, boolean onlineFlag, CommandStatus):voidmodifyHARNotice(AccessToken, TrafficEventList): voidisHARNoticeActive() : booleansetAssociatedHAR(AccessToken, HAR, Identifier harID):voidgetAssociatedHAR() : HARgetDirection():DirectionValuessetDirection(Direction):voidOKCOMM_FAILUREHARDWARE_FAILUREstring reasonsequence DMSgetResponsePlanItem():ResponsePlanItemfactory createDMSArbQueueEntry(TrafficEvent trafficEvt, ResponsePlanItem rpi, DMSMessage message):DMSArbQueueEntryResponsePlanItem m_responsePlanItemgetDeviceIDs():Identifier[]getOwner():EntryOwnergetOwnerID():IdentifiergetKey():ArbQueueEntryKeygetOpCenterID():IdentifiergetOpCenterName():stringgetHostName():stringgetUseAllDevices():booleangetUserName():stringgetMessage():MessagegetPriority():doublesetDeviceIDs(Identifier[]):voidsetHostName(string hostName):voidsetIndicator(ArbQueueEntryIndicator data) : voidsetOpCenterID(Identifier opCenterID):voidsetOpCenterName(string opCenterName):voidsetPriority(double newpriority):voidsetUseAllDevices(boolean):voidsetUserName(string userName):voidvalidate():EntryValidStatusm_entryOwner: EntryOwnerm_indicator: ArbQueueEntryIndicatorm_useAllDevices: booleanm_deviceIDs: Identifier[]m_message: Messagem_priority: doublem_hostName: stringm_opCenterID: Identifierm_opCenterName: stringm_userName: stringONLINEOFFLINEMAINT_MODEcreateDMS(AccessToken token, DMSConfiguration config) : DMSInfogetDMSList() : DMS[]getDMSInfoList(): DMSInfo[]factory createDMSStatus() : DMSStatusm_performingPixelTest: booleanm_currentMessage: DMSMessagem_commMode: CommunicationsModem_opStatus: OperationalStatusm_shortErrorStatus: ShortErrorStatusm_statusChangeTime: longenabledTravInfoMsgId: IdentifiermsgState: DMSTravInfoMsgStatemsgReason: stringgetBeaconState() : booleangetMessageText():stringisMessageTextMulti():booleanfactory createDMSMessage(MULTIString multiStringMessage, boolean beaconState, boolean isMessageTextMulti) : DMSMessagem_dmsMessageString: stringm_dmsMessageBeacon: booleanm_isMessageTextMulti: booleanfactory createChart2DMSStatus() : Chart2DMSStatusm_controllingOpCenter: OpCenterInfom_travInfoMsgStat: DMSTravInfoMsgStatusDISPLAYED_NORMALLYTOLL_RATE_EXPIREDMISSING_DATABAD_QUALITYBAD_FORMATTEMPLATE_SIZE_MISMATCHPRE_EMPTEDNO_MSG_ENABLEDNOT_SCHEDULEDDMS_NOT_ONLINEgetCommandStatus():CommandStatusfactory createHARNotifierArbQueueEntry(ArbQueueEntryIndicator, TrafficEvent[], DMSMessage, CommandStatus):HARNotifierArbQueueEntryTrafficEvent[] m_trafficEventListfactory createFP9500Status() : FP9500DMSStatusoctet m_currentMsgNumoctet m_currentMsgSourceperformPixelTest(AccessToken token, CommandStatus status) : voidgetExtendedStatus(AccessToken token, CommandStatus status):FP9500DMSStatusgetDMS() : Chart2DMSgetMessage() : DMSMessagesetDMS(Chart2DMS) : voidsetMessage(DMSMessage) : voidfactory create DMSRPIData() : DMSRPIDataChart2DMS m_dmsDMSMessage m_messagemoduleNode : stringmoduleMake : stringmoduleModel : stringmoduleVersion : stringmoduleComponentType : stringgetExtendedStatus(AccessToken, CommandStatus):NTCIPDMSStatusperformPixelTest(AccessToken, CommandStatus):voidsetCentralControlMode(AccessToken, int, CommandStatus):voidfactory createNTCIPDMSStatus() : NTCIPDMSStatusm_controlMode : longm_dmsMsgSourceMode : longm_powerSource : longm_moduleComponentInformation : NTCIPDeviceComponentInformationListm_displayWidthPixels : longm_displayHeightPixels : long

Figure 5‑42. DMSControl (Class Diagram)

5.6.1.3.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online.

5.6.1.3.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

5.6.1.3.3 BeaconType (Class)

The BeaconType class defines the beacon type for a DMS. Its values are defined by the BeaconTypeValues class. It is a part of a DMSConfiguration object.

5.6.1.3.4 BeaconTypeValues (Class)

The BeaconTypeValues class enumerates the various beacon types used on DMS devices (number of beacons and whether and in what manner they flash).

5.6.1.3.5 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to be used in manipulating the CHART-specific DMS objects within CHART. It provides an interface for traffic events to provide input as to what each traffic event desires to be on the sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface, a HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic message. CHART business rules include concepts such as shared resources, arbitration queues, and linking device usage to traffic events. These concepts go beyond industry-standard DMS control. This includes an ability to enable and disable CHART traveler information messages, which were added in R3B3.

5.6.1.3.6 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the DMSConfiguration class to provide configuration information specific to Chart II processing. Such information includes how to contact the sign under Chart II software control, the default SHAZAM message for using the sign as a HAR Notifier, and the owning organization. Such data extends beyond what would be industry-standard configuration information for a DMS. Parameters to support TCP/IP communications, notifications and more alerts, and traveler information messages were added for R3B3.

5.6.1.3.7 Chart2DMSFactory (Class)

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional Chart II specific capability. This factory creates Chart2DMS objects (extensions of DMS objects). It implements the SharedResourceManager capability to control DMS objects as shared resources.

5.6.1.3.8 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to provide status information specific to CHART processing, such as information on the controlling operations center for the sign. This data extends beyond what would be industry-standard status information for a DMS. Status information for traveler information messages was added in R3B3.

5.6.1.3.9 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

5.6.1.3.10 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE, OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the operational system. OFFLINE is used to indicate the device is not available to the online system and communications to the device have been disabled. MAINT_MODE is used to indicate that the device is available only for maintenance / repair activities and testing.

5.6.1.3.11 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign (DMS) objects within Chart II. It specifies methods for setting messages and clearing messages from a sign (in maintenance mode), polling a sign, changing the configuration of a sign, and resetting a sign. (Setting messages on a sign in online mode are not accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic events, which use an ArbitrationQueue interface or by manipulating HARs, which use a HARMessageNotifier interface. This activity involves the DMS extension, Chart2DMS, which defines interactions with signs under Chart II business rules.)

5.6.1.3.12 DMSArbQueueEntry (Class)

The DMSArbQueueEntry class provides an implementation of ArbQueueEntry that is used for most standard entries placed on the arbitration queue. When its setActive, setInactive, and setFailed methods are called, it adds a log entry to its traffic event and calls the appropriate method on its response plan item (setActive, setInactive, or update).

5.6.1.3.13 DMSConfiguration (Class)

The DMSConfiguration class is an abstract valuetype class which describes the configuration of a DMS device. This configuration information is normally fairly static: things like the size of the sign in characters and pixels, its name and location, and how to contact the sign (as opposed to dynamic information like the current message on the sign, which is defined in an analogous Status object). The font number, line spacing, default page justification, and inter-character spacing were added in later releases, and the location was changed to a ObjectLocation, which contains more detailed locations fields.

5.6.1.3.14 DMSConfigurationEventInfo (Class)

The DMSConfigurationEventInfo class is the type of DMSEvent used for DMSEventType DMSConfigChanged. It contains a DMSConfiguration object which details the new configuration for a Chart II DMS object.

5.6.1.3.15 DMSEvent (Class)

The DMSEvent class is a union which can be any one of four events relating to DMS operations which can be pushed on an Event Channel to update event consumers on DMS-related activities. The four types of events, defined by the enumeration DMSEventType, are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged.

5.6.1.3.16 DMSEventType (Class)

The DMSEventType is an enumeration which defines the five types of events relating to DMS operations which can be pushed on an Event Channel to update event consumers on DMS-related activities. The five types of events are: DMSAdded, DMSDeleted, CurrentDMSStatus, DMSConfigChanged, and DMSTravInfoMsgCfgChanged.

5.6.1.3.17 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the Chart II system. It also provides a method to get a list of DMS devices currently in the system.

5.6.1.3.18 DMSInfo (Class)

This is a structure which contains all information about a DMS: its ID, its configuration and status, the DMS type (internal or external), and a CORBA refrence to the DMS.

5.6.1.3.19 DMSList (Class)

The DMSList class is simply a list of DMS devices which can be used by the DMS Factory and other classes for maintaining the list or other lists of DMS objects.

5.6.1.3.20 DMSMessage (Class)

The DMSMessage class is an abstract class which describes a message for a DMS. It consists of two elements: a MULTI-formatted message and beacon state information (whether the message requires that the beacons be on). The DMSMessage is contained within a DMSStatus object, used to communicate the current message on a sign, and is stored within a DMSRPIData object, used to specify the message which should be on a sign when the response plan item is executed.

5.6.1.3.21 DMSModelID (Class)

The DMSModelID class enumerates the models of DMSs that are in the system.

5.6.1.3.22 DMSPlanItemData (Class)

The DMSPlanItemData class is a valuetype that contains data stored in a plan item for a DMS. It is derived from PlanItemData.

5.6.1.3.23 DMSRPIData (Class)

The DMSRPIData class is an abstract class which describes a response plan item for a DMS. It contains the unique identifier of the DMS to contain the DMSMessage, and the DMSMessage itself.

5.6.1.3.24 DMSStatus (Class)

The DMSStatus class is an abstract value-type class which provides status information for a DMS. This status information is relatively dynamic: things like the current message on the sign, its beacon state, its current operational mode (online, offline, maintenance mode), and current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More static information about the sign, such as its size and location, is defined in an analogous Configuration object.)

5.6.1.3.25 DMSStatusEventInfo (Class)

The DMSStatusEventInfo class is the type of DMSEvent used for DMSEventType CurrentDMSStatus. It contains a DMSStatus object which details the new status for a Chart II DMS object.

5.6.1.3.26 DMSTravInfoMsg (Class)

This class holds information necessary to put traveler information messages (containing travel times and/or toll rates) on DMSs. Each TravelerInfoMsg contains the ID for the template, and the IDs of the routes to use, as configured for its specific DMS. Each TravelerInfoMsg can be enabled or disabled. The DMSControlModule will ensure that a maxiumum of one TravelerInfoMsg is enabled at a time.

5.6.1.3.27 DMSTravInfoMsgConfig (Class)

This class is a part of Chart2DMSConfiguration. This class holds information necessary to put traveler information messages (containing travel times and/or toll rates) on DMSs. Each DMSTravelerInfoMsgConfig contains travelTimeQueueLevel, tollRateQueueLevel, array of relatedRoutes,arra of TravInfoMsd, overrideDefaultSchedule, enabledSpecificTime, and array of customSchedule.

5.6.1.3.28 DMSTravInfoMsgConfigEventInfo (Class)

The DMSTravInfoMsgConfigEventInfo class is the type of DMSEvent used for DMSEventType DMSTravInfoMsgCfgChange. It contains a DMSCTravInfoMsgConfig and Identifier of DMS object.

5.6.1.3.29 DMSTravInfoMsgState (Class)

This enumeration lists possible states for traveler information messages. The first state is the normal case -- all others are reasons why a traveler information message may be not displayed (or not displayed correctly). It is possible that some of these states could occur at the same time, but since this is not expected to occur too often, only one state will be provided in the status. When one problem state is corrected, the next problem state (if any) would bubble up into the status. The problem states are listed in roughly priority order (although the implementation is not obliged to abide by this order if another ordering is determined to be better).

5.6.1.3.30 DMSTravInfoMsgStatus (Class)

This structure provides a textual and encoded view into what is happening with the traveler information message for this DMS.

5.6.1.3.31 DMSType (Class)

This is an enumeration which lists the possible types of DMS: CHART (internal to CHART) or External (imported).

5.6.1.3.32 EntryOwner (Class)

Interface which must be implemented by any class which is responsible for putting an ArbQueueEntry on a device's arbitration queue. This validate method of this interface can be called by the device to determine continued validity of the entry (either during recovery or as a final check of the validity of an entry before putting its message on the device).

5.6.1.3.33 ExternalDMS (Class)

The ExternalDMS class extends the DMS interface and defines a more detailed interface to be used in manipulating the External DMS objects within CHART.

5.6.1.3.34 ExternalDMSFactory (Class)

The ExternalDMSFactory interface extends the DMSFactory interface.. This factory creates ExternalDMS objects (extensions of DMS objects).

5.6.1.3.35 FontMetrics (Class)

The FontMetrics class is a non-behavioral class (structure) which contains information regarding to the font size used on a DMS. It is a part of a DMSConfiguration object.

5.6.1.3.36 FP9500DMS (Class)

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixelTest method, which knows how to invoke and interpret a pixel test as supported by the FP9500 model DMS.

5.6.1.3.37 FP9500DMSStatus (Class)

The FP9500DMSStatus class provides additional storage for status information unique to the FP9500 model of sign. It is exemplary of potentially a whole suite of Chart2DMSStatus subclasses specific to a specific brand and model of sign.

5.6.1.3.38 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

5.6.1.3.39 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a SHAZAM-like message.

5.6.1.3.40 HARNotifierArbQueueEntry (Class)

The HarNotifierArbQueueEntry class provides an implementation of the ArbQueueEntry used for entries that are placed on the arbitration queue to put a "SHAZAM" message on a DMS. These types of messages have a low priority and are not allowed to overwrite any standard message (from a DMSArbQueueEntry) that is currently displayed on a device. These types of messages are also different in that they are not added to the queue directly by a response plan item and are instead included as a sub-task of activating a message on a HAR. The HAR uses a command status object to track the progress of the HAR notifier message.

5.6.1.3.41 HHMMRange (Class)

This structure defines a time duration.

5.6.1.3.42 IPPortLocationData (Class)

This structure defines the connection information of a TCP/IP port.

5.6.1.3.43 Message (Class)

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

5.6.1.3.44 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and reprioritize traffic event entries in a prioritized list.

5.6.1.3.45 MULTIParseFailure (Class)

The MULTIParseFailure class is an exception to be thrown when a MULTI-formatted DMS message cannot be correctly parsed.

5.6.1.3.46 MULTIString (Class)

The MULTIString class is a MULTI-formatted DMS message. The DMSMessage class contains a MULTIString value to specify the content of the sign, in addition to the beacon state value.

5.6.1.3.47 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is running. This field is useful for administrators in debugging problems should an object become "software comm failed".. It is included in the Chart2DMSStatus.

5.6.1.3.48 NTCIPDeviceComponentInformation (Class)

This class holds information regarding device component information for an NTCIP device.

5.6.1.3.49 NTCIPDMS (Class)
The NTCIPDMS class extends the Chart2DMS interface and defines a more detailed interface to be used in manipulating the NTCIP DMS objects within CHART. It provides an interface to get extended status for the NTCIPDMS. It also provides interfaces to perform a pixel test and to set the control mode to central on a NTCIP compliant DMS.

5.6.1.3.50 NTCIPDMSStatus (Class)
The NTCIPDMSStatus class provides additional storage for status information unique to the NTCIP compliant model of sign. It contains members for control mode, message source, power source, module component info, sigh height in pixels and sign width in pixels.

5.6.1.3.51 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have: OK (normal mode), COMM_FAILURE (no communications to the device), or HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

5.6.1.3.52 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes contain specific data that map a device to an operation and the data needed for the operation. For example a derived class provides a mapping between a specific DMS and a DMSMessage.

5.6.1.3.53 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan item. Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

5.6.1.3.54 ResponsePlanItemTarget (Class)

This interface represents an object that can be a target of a response plan item.

5.6.1.3.55 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

5.6.1.3.56 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

5.6.1.3.57 ShortErrorStatus (Class)

The ShortErrorStatus class identifies an error condition for a DMS. It is a bit field defined by the NTCIP center to field standard for DMS that specifies error conditions that may be present on the device. This class is used to encapsulate the bit mask and provide a user friendly interface to the error conditions. The DMSStatus class contains a value of this type.
A non-specified error is present. BIT_MASK_OTHER_ERR = 0x0001
A communications error is present. BIT_MASK_COMM_ERR = 0x0002
A power error is present. BIT_MASK_POWER_ERR = 0x0004
An attached device error is present. BIT_MASK_ATTACHED_DEV_ERR = 0x0008
A lamp error is present. BIT_MASK_LAMP_ERR = 0x0010
A pixel error is present. BIT_MASK_PIXEL_ERR = 0x0020
A photocell error is present. BIT_MASK_PHOTOCELL_ERR = 0x0040
A message error is present. BIT_MASK_MESSAGE_ERR = 0x0080
A controller error is present. BIT_MASK_CONTROLLER_ERR = 0x0100
A temperature warning is present. BIT_MASK_TEMP_WARN = 0x0200
A climate control error is present. BIT_MASK_CLIMATE_CNTL_ERROR = 0x0400
A critical temperature error is present. BIT_MASK_CRITICAL_TEMP_ERROR = 0x0800
A drum sign rotor error is present. BIT_MASK_DRUM_SIGN_ERROR = 0x1000
Any door to any DMS field component (cabinet or housing) is open. BIT_MASK_OPEN_DOOR_WARN = 0x2000
A humidity sensor is reporting a humidity warning. BIT_MASK_HUMIDITY_WARNING = 0x4000
5.6.1.3.58 SignMetrics (Class)

The SignMetrics class is a non-behavioral class (structure) which contains information regarding to the size of a DMS, in pixels and characters. It is a part of a DMSConfiguration object.

5.6.1.3.59 SignType (Class)

The SignType class defines the sign type for a DMS. Its values are defined by the SignTypeValues class. It is a part of a DMSConfiguration object.

5.6.1.3.60 SignTypeValues (Class)

The SignTypeValues class enumerates the various sign types DMS devices. Examples are bos, cms, vmsChar, etc.

5.6.1.3.61 TravelRouteConsumer (Class)

This interface allows other CHART objects to register as a direct consumer of travel route statistical data. It provides operations for the travel route to call when the travel time or toll rate for the route is updated. A DMS registers as a TravelRouteConsumer when a TravelerInfoMsg is enabled.

5.6.1.3.62 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.
5.6.1.4 EventChannelAdmin (Class Diagram)

[image: image62.emf]EventChannelFactory

«interface»

createChannel(id:ChannelId):EventChannel

get_channel_by_id(id:ChannelID):EventChannel

getChannels():ChannelIdSeq

shutdown():void

Figure 5‑43. EventChannelAdmin (Class Diagram)
5.6.1.4.1 EventChannelFactory (Class)
This is a CORBA interface for the event channel factory - the factory that serves event channels.

5.6.2 Sequence Diagrams
None

5.7 Utility Package

5.7.1 Class Diagrams

5.7.1.1 UtilityClasses (Class Diagram)

This Class Diagram shows various utility classes that are used by various applications.

[image: image63.emf]11DiscoveryHost«interface»New for R3B3Duplicatable«interface»TraderGroup11110..111DiscoveryManagerSystemContextProvider«interface»DiscoveryDriver11111*1**1**See ObjectCacheclass diagram formore details.DataModel11ObjectCacheNameFilter111111111NameFilterable«interface»110..11ExtendedCommandStatus«interface»111SyncCommandStatusImplSyncExtendedCommandStatusImplCommandStatus«interface»0..10..1ChildCommandStatusData«datatype»0..111*1IdentifiableLookupTableEventConsumer«interface»DBConnectionManagerIdentifierPushEventSupplierUniquelyIdentifiable«interface»POA«interface»IdentifierGeneratorPushEventConsumerServiceApplicationModule«interface»QueueableCommand«interface»CommandQueuejava.lang.Runnable«interface»java.util.PropertiesEventConsumerGroupCosEventChannelAdmin.EventChannel«interface»ServiceApplication«interface»11111*111DefaultServiceApplication1ServiceApplicationProperties0..1*createIdentifier()areIdentifiersEqual()Identifier(byte[] chartID)equals(Object obj)hashCode()byte[] getID()m_idput(Identifiable)find(identifier)remove(identifier)elements()size()+getConnection() : java.sql.Connection+getCurrentOpenCursors() : int+releaseConnection() : void+shutdown() : void+verifyDBInitialized() : booleangetID()getName()getProperty()setProperty()start(args : string[]) : booleanshutdown() : booleangetDataModel() : DataModelgetDBConnectionManager() : DBConnectionManagergetDBConnectionManagers() : DBConnectionManager[]getDefaultProperties() : PropertiesgetDiscoveryDriver() : DiscoveryDrivergetDiscoveryManager() : DiscoveryManagergetEventChannelFactory() : EventChannelFactorygetEventChannelVerficationIntervalSecs() : intgetIDGenerator() : IdentifierGeneratorgetMaxRemoteTraderSourceUseMins() : intgetNetConnectionSite() : StringgetObjectCache() : ObjectCachegetOperationsLog() : OperationsLoggetORB() : ORBgetORBSpecificUtil() : ORBSpecificgetPOA(string poaName) : POAgetProperties() : java.util.PropertiesgetServiceName() : StringgetTraderGroup() : TraderGroupgetTradingRegister() : CosTrading.RegistergetTradingRepos() : CosTrading.ServiceTypeRepositorygetUseAllTraders() : booleanregisterEventChannel(EventChannel, name) : voidregisterEventChannelInAllTraders(EventChannel, name) : voidregisterObject(obj, id, name, type, publish) : voidregisterObject(obj, id, name, type, properties, publish) : voidregisterObjectInAllTraders(obj, id, name, type, publish) : voidregisterObjectInAllTraders(obj, id, name, type, properties, publish) : voidresolveTraders(token : byte[]) : voidactivate_object(Servant obj)deactivate_object(object_id)deactivate()the_POAManager() : POAManagercreate_POA() : POAServiceApplicationProperties(String propertiesFilename)getProperties()getDefaultProperties()getThreadModel():intgetThreadPoolSize():intgetDatabaseConnectString():StringgetDatabaseUserName():StringgetDatabasePassword():StringgetModuleNames():String[]getNetConnectionSite():Stringexecute()interrupted()getSystemProfileProperties() : SystemProfilePropertiesgetRootDeploymentPath() : stringgetDynamicImagePath() : stringgetDataModel() : DataModelgetProcessingQueue() : CommandQueuechildDeviceID:IdentifierchildDeviceName:stringlatestStatusText:stringcompleted:booleansuccess:boolean+addCommand(CommandTransaction)+dequeue()+executeCommand()+receive(Identifier)+receiveResponse(byte[])+run()+sendCommandToComPort(CameraCommand)+stopThread()m_commands : Listm_comport : CameraControlComPortm_comportName : Stringm_enableDeviceLogging : booleanm_lock : Objectm_responseLock : Objectm_responses : Hashtablem_simulated : booleanm_stopThread : booleangetORB():ORBgetPOA(poaName):POAgetTraderGroup():TraderGroupgetServiceName():StringgetHostname():StringgetIDGenerator():IdentifierGeneratorgetNumDiscoveryThreads():intgetDiscoveryIntervalSecs():intgetArbQueuePollIntervalSecs():intgetEORSPollIntervalMins():intgetObjectCacheLogFlags():StringgetNetConnectionSite():StringgetFirstAvailableServiceRemoteUseMins():intgetDiscoveryManager():DiscoveryManagerrun()update(String status):voidcompleted(boolean commandSuccessful, String finalStatus):voidcompletedSameStatus(boolean commandSuccessful):voidPushEventSupplier(EventChannelFactory factory, String channelName, PushSupplier supplier)getChannel():EventChannel;getMaxReconnectInterval(void):int;setMaxReconnectInterval(int seconds):void;push(Any data):void;disconnectPushConsumer(void):void;initialize(ServiceApplication app):booleangetVersion() : ComponentVersiontraderGroupUpdated() : voidshutdown(ServiceApplication app):booleanServiceApplication m_svcApp;DefaultServiceApplicationProperties m_props;DefaultServiceApplication(String propertiesFilename) : ctor+start(args : string[]) : boolean+shutdown() : boolean+resolveTraders(token : AccessToken) : void+getDataModel() : DataModel+getDiscoverDriver() : DiscoverDriver+withdrawStaleOffers()-writeOffersToFile(String moduleName, int[] offerIDs):boolean-removeOffersFromFile(String moduleName):booleanm_props : ServiceApplicationPropertiesm_opLog : OperationsLogm_orb : ORBm_poa : POAm_tradingRegister : Registerm_localTradingLookup : Lookupm_tradingRepos : ServiceTypeRepositorym_traderGroup : TraderGroupm_dbConnectionMgr : DBConnectionManagerm_opLog : OperationsLogm_cmdQueue : CommandQueuem_discoveryMgr : DiscoveryManagersetBasicCmdStatus(cmdStat:CommandStatus):voidsetExtendedCmdStatus(xCmdStat:ExtendedCommandStatus):voidsetChildDeviceInfo(id:Identifer,name:string):voidm_masterCmdStat:CommandStatusm_masterExtCmdStat:ExtendedCommandStatusm_childDeviceID:Identifierm_childDeviceName:stringm_childCmdStatusData:ChildCommandStatusDatam_childCmdStatusString:stringfor_consumers()for_suppliers()destroy()completedAny(commandSuccessful, finalStatus, detail:any):voidupdateAny(status):void+getDataModel() : DataModel+getObjectCache() : ObjectCache+getDiscoveryDriver() : DiscoveryDriverm_traderGroup : TraderGroupm_discoveryDriver : DiscoveryDriverm_dataModel : DataModelm_ecg : EventConsumerGroupm_objectCache : ObjectCacheClassm_processingQueue : CommandQueuePushEventConsumer(channel, pushConsumer)m_event_channel : EventChannelm_pushConsumer : CosEvent.PushConsumerverifyConnection()connect()isEqual(consumer)setBasicCmdStatus(cmdStat:CommandStatus):voidsetExtendedCmdStatus(xCmdStat:ExtendedCommandStatus):voidsetChildDeviceInfo(id:Identifer,name:string):voidm_masterCmdStat:CommandStatusm_masterExtCmdStat:ExtendedCommandStatusm_childDeviceID:Identifierm_childDeviceName:Stringm_childCmdStatusData:ChildCommandStatusDatam_childCmdStatusString:string+ObjectCache(orb : ORB, poa : POA, dataModel : DataModel, ecg : EventConsumerGroup, contextProvider : SystemContextProvider, discoveryDriver : DiscoveryDriverClass, cmds : QueueableCommand[]) : ctor+getDataModel() : DataModel+getObject(key : Object) : Object+getObjectsOfType(classCheck : Class) : Object[]+getAllObjects() : Object[]+getNameFilteredObjectsOfType(type : Class, filter : NameFilterClass) : Object[]+isDuplicated(type : Class, other : Duplicatable) : boolean+getDuplicates(type : Class, other : Duplicatable) : Duplicatable[]+search(criteria : string, caseSensitive : boolean, fromClasses : Class[]) : Object[]m_orb : ORBm_poa : POAm_dataModel : DataModelm_ecg : EventConsumerGroupm_traderGroup : TraderGroupm_discoveryToken : AccessTokenm_sysProfileProps : SystemProfilePropertiesm_sysContextProvider : SystemContextProviderDiscoveryDriver(TraderGroup, numThreads, discoveryIntervalSecs) : ctoradd(QueueableCommand cmd) : voidperformDiscovery() : voidm_commandQueue : CommandQueuem_timer : java.util.Timerm_commands : QueueableCommand[]m_traderGroup : TraderGroupnameContains(filterStr : string) : booleanadd(consumer)setInterval()remove(consumer)-hasConsumer(consumer)-verifyConnections()m_consumers : Vector<EventConsumer>+NameFilter(filterOutMatchingObjects : boolean, filterStr : string) : ctor+filter(incoming : NameFilterable[]) : NameFilterable[]+objectPassesFilter(obj : NameFilterableIF) : boolean+setFilterString(filterStr : string) : void+getFilterString() : string+setFiltersOutMatchingObjects(filterOutMatches : boolean) : void+getFiltersOutMatchingObjects() : booleanm_fiterOutMatchingObjects : booleanm_filterString : stringisDuplicateOf(type : Class, other : Duplicatable) : boolean

Figure 5‑44. UtilityClasses (Class Diagram)
5.7.1.1.1 ChildCommandStatusData (Class)
This structure can be sent as the Any in an ExtendedCommandStatus back to clients. It contains information about a particular action which has taken place during processing of a long-running command fired off to one of any number of subsidiary "sub"-objects for completion of the primary task. This structure identifies the specific device for which the action has occurred, together with text and flags indicating the latest state of the command process on that device.

5.7.1.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

5.7.1.1.3 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running asynchronous operation. This is normally used when field communications are involved to complete a method call. The most common use is to allow a GUI to show the user the progress of an operation. It can also be used and watched by a server process when it needs to call on another server process to complete an operation. The long running operation typically calls back to the CommandStatus object periodically as the command is being executed, to provide in-progress status information, and it always makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

5.7.1.1.4 CosEventChannelAdmin.EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and consumers of information.

5.7.1.1.5 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.7.1.1.6 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.7.1.1.7 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is passed a properties file during construction. This properties file contains configuration data used by this class to set the ORB concurrency model, determine which ORB services need to available, provide database connectivity, etc. The properties file also contains the class names of service modules that should be served by the service application. During startup, the DefaultServiceApplication instantiates the service application module classes listed in the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading Service. Each module must provide an implementation of the getOfferIDs method and be able to return the offer ids for each object they have exported to the trader during their initialization. The DefaultServiceApplication stores all offer IDs in a file during its startup. Each module is expected to remove its offers from the trader during a shutdown. If the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old offers prior to initializing modules during its next start. This keeps multiple offers for the same object from being placed in the trader.

The DefaultServiceApplication also starts a DiscoveryManager. (If no modules add discovery QueueableCommand objects to the DiscoveryManager's DiscoveryDriver, discovery runs, but does nothing, so incurs virtually no cost.)

5.7.1.1.8 DiscoveryDriver (Class)

This class drives the periodic discovery of objects from other services within the CHART system. Other objects in the system that need access to other service's objects add their own QueuableCommand to the DiscoveryDriver. Each time discovery is performed, the discovery driver uses a command queue to execute all queueable commands that have been added in a separate thread of execution. The commands are added to the command queue immediately upon execution, and then executed in serial fashion via the command queue until all commands have executed. The frequency of discovery is controlled by a property. Discovery occurs more frequently immediately after service startup, to more quickly discover objects from other services which may also be starting up at more or less the same time. The DiscoveryDriver can be configured to have multiple threads to allow concurrent discovery of different objects.

5.7.1.1.9 DiscoveryHost (Class)

This interface defines the methods that the DiscoveryManager relies on. It must be implemented by any class that will create a DiscoveryManager.

5.7.1.1.10 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class which provides discovery services for CHART services. It is used by both the CHART GUI and the CHART backend services. A class which implements this interface must provide "get" accessor methods for the system profile properties, the data model, and the main processing queue for a service, for instance. It also provides access to the root deployment path and dynamic image path, which is used only by the CHART GUI. For the CHART GUI, this interface is known to be implemented by the MainServlet; for the back end CHART services, this interface is known to be implemented by the Discovery Manager.

5.7.1.1.11 Duplicatable (Class)

This java interface is implemented by classes which have sense of being "duplicated" within the CHART system. This allows the ObjectCache to search for duplicates of any Duplicatable object. This is different from "equals()" or "compareTo()". To cite two examples: Alerts within CHART are duplicates if they refer to the same objects within CHART (but do not have the same Alert ID, which is more closely associated with "equals()"). Traffic Events within CHART are duplicates if they have the same location (but do not have the same Traffic Event ID).

5.7.1.1.12 EventConsumer (Class)

This interface provides the methods which any EventConsumer object that would like to be managed in an EventConsumerGroup must implement.

5.7.1.1.13 EventConsumerGroup (Class)

This class represents a collection of event consumers which will be monitored to verify that they do not lose their connection to the CORBA event service. The class will periodically ask each consumer to verify its connection to the event channel on which it is dependant to receive events.

5.7.1.1.14 ExtendedCommandStatus (Class)

The ExtendedCommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running asynchronous operation. This interface extends the basic CommandStatus interface by allowing additional information to be passed in in a CORBA "Any" object. The "Any" can be configured to hold (as the name would suggest) any type of information. The information defined in the any varies based on the particular command being called. The most common use is to allow a GUI to show the user the progress of an operation. It can also be used and watched by a server process when it needs to call on another server process to complete an operation. The long running operation typically calls back to the ExtendedCommandStatus object periodically as the command is being executed, to provide in-progress status information, and it always makes a final call to the CommandStatus when the operation has completed. The final call to the ExtendedCommandStatus from the long running operation indicates the success or failure of the command.

5.7.1.1.15 IdentifiableLookupTable (Class)

This class uses a hash table implementation to store Identifiable objects for fast lookups.

5.7.1.1.16 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

5.7.1.1.17 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers which are to be used in Identifiable objects.

5.7.1.1.18 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

5.7.1.1.19 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

5.7.1.1.20 NameFilter (Class)

This class defines a filter by which a NameFilterable object can be selected from the ObjectCache. It provides a string to search for, and a flag to indicate whether the desired result is those object which match the filter, or those which do not.

5.7.1.1.21 NameFilterable (Class)

This java interface is implemented by classes which can be filter by name within the ObjectCache. A NameFilter object is passed into the ObjectCache to select NameFilterable objects in the cache.

5.7.1.1.22 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.7.1.1.23 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant objects.

5.7.1.1.24 PushEventConsumer (Class)

This class is a utility class which will be responsible for connecting a consumer implementation to an event channel, and maintaining that connection. When the verifyConnection method is called, this object will determine if the channel has been lost and will attempt to re-connect to the channel if it has.

5.7.1.1.25 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.7.1.1.26 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.7.1.1.27 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.7.1.1.28 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.7.1.1.29 ServiceApplicationProperties (Class)

This class provides methods which allow the DefaultServiceApplication to access the necessary properties from the java properties configuration file. It also provides a default properties file which can be retrieved by anyone holding a ServiceApplication interface reference. This gives each installed service module the opportunity to load default values before retrieving property values from the properties file.

5.7.1.1.30 SyncCommandStatusImpl (Class)

This is an implementation of CommandStatus which can be used by server-side processes which need to kick off and check results of multiple long-running commands. The SyncCommandStatusImpl can notify a MuxWaitSem object when the CommandStatus completed() call is made (meaning the long-running command has completed). (The MuxWaitSem can be waited on until all such SyncCommandStatusImpl objects have completed.) Additionally, new in R2B3, the SyncCommandStatusImpl has the faciility to take a "master" CommandStatus or ExtendedCommandStatus (expected to be held by client code) which can receive results from the various "child" CommandStatus objects. If the master is a simple CommandStatus, the results are sent "inline" as additional text messages in update() calls, for unstructured, unsorted display to the user. If the master is an ExtendedCommandStatus, the results are sent in a ChildCommandStatusData object, for more organized display to the user.

5.7.1.1.31 SyncExtendedCommandStatusImpl (Class)

This is an implementation of ExtendedCommandStatus which can be used by server-side processes which need to kick off and check results of multiple long-running commands. The SyncExtendedCommandStatusImpl can notify a MuxWaitSem object when the CommandStatus completed() call is made (meaning the long-running command has completed). (The MuxWaitSem can be waited on until all such SyncExtendedCommandStatusImpl objects have completed.) Additionally, new in R2B3, the SyncExtendedCommandStatusObject has the faciility to take a "master" CommandStatus or ExtendedCommandStatus (expected to be held by client code) which can receive results from the various "child" CommandStatus objects. If the master is a simple CommandStatus, the results are sent "inline" as additional text messages in update() calls, for unstructured, unsorted display to the user. If the master is an ExtendedCommandStatus, the results are sent in a ChildCommandStatusData object, for more organized display to the user.

5.7.1.1.32 SystemContextProvider (Class)

This SystemContextProvider interface defines some of the functionality required by a class which provides discovery services for CHART services. It is used by both the CHART GUI and the CHART backend services. A class which implements this interface must provide "get" accessor methods for the system profile properties, the data model, and the main processing queue for a service, for instance. It also provides access to the root deployment path and dynamic image path, which is used only by the CHART GUI. For the CHART GUI, this interface is known to be implemented by the MainServlet; for the back end CHART services, this interface is known to be implemented by the Discovery Manager.

5.7.1.1.33 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be unaware of the number of CORBA trading services that the application is using or the details of the linkage between those services.

5.7.1.1.34 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.
5.7.2 Sequence Diagrams

None

5.8 Watchdog Service Package

5.8.1 Class Diagrams

5.8.1.1 WatchdogServiceClasses (Class Diagram)

This diagram shows the Watchdog service and module classes.

[image: image64.emf]WatchdogServiceDelegateOperations

«interface»

WatchdogModule

Service

«interface»

WatchdogServiceImplWatchdogServiceImpl will actually implement the

WatchdogServiceOperations interface which is not

shown here but is identical to WatchdogService

that is shown here. When WatchdogServiceImpl

is called, it will delegate the calls to the WatchdogModule

using the WatchdogServiceDelegateOperations interface

that the module sets into the service during initialization.

QueryServiceCommand

QueryAllServicesTaskDiscoverLocalServicesTask

java.util.TimerTask

CHART2ServiceServiceApplicationModule

«interface»

CHART2Service needs to be changed

to use tie classes, implement ServiceOperations instead of

extending the ServicePOA class, and implement the following

to be overridden in WatchdogServiceImpl:

activateInPOA(id:byte[], poa : POA) : org.omg.CORBA.Object

addServiceTypesToTradingRepos(

 repos : org.omg.CosTradingRepos.ServiceTypeRepository, orb ORB) : void

getServiceTypeName() : String

These are not added to avoid cluttering any other diagrams that use

CHART2Service, as this is a specialized usage to extend CHART2Service

that is not of general interest.

CreateServiceAlertCmdSendNotificationCmdPerformShellCommandsCmd

QueueableCommand

«interface»

11

WatchdogService

«interface»

UniquelyIdentifiable

«interface»

WatchdogModuleProperties

getID()

getName()

getServiceIdentificationInfo() : ServiceIdentificationInfo

getServiceInfo() : ServiceInfo

getServiceStatus() : ServiceStatus

getNetConnectionSite() : String

getVersion() : ApplicationVersion

getStartTime() : long

getUptime() : long

ping() : void

resolveTraders(token : byte[])void()

setLogLevel(token : byte[], logLevel : short)

getMonitoredServicesInfo(token : byte[]) : MonitoredServiceInfo[]

startService(token : byte[], serviceName : String) : void

stopService(token : byte[], serviceName : String) : void

restartService(token : byte[], serviceName : String) : void

pingAllMonitoredServices(token : byte[]) : void

pingService(token : byte[], serviceName : String) : void

get() : static WatchdogServiceImpl

main(String[]) : static void

activateInPOA(id : byte[], poa POA) : org.omg.CORBA.Object

addServiceTypesToTradingRepos(

 repos : org.omg.CosTradingRepos.ServiceTypeRepository,

 orb ORB) : void

getServiceCORBAObject() : org.omg.CORBA.Object

getServiceTypeName() : String

setWatchdogDelegate(

 delegate : WatchdogServiceDelegateOperations) : void

-verifyDelegateSet(commandName : String) : void

m_impl : static WatchdogServiceImpl

m_delegate : WatchdogServiceDelegateOperations

m_serviceObjRef : org.omg.CORBA.Object

main(string[] args):void

m_alertDesc : String

m_serviceAlertType : ServiceAlertType

m_serviceInfo : MonitoredServiceInfo

getMonitoredServicesInfo(token : byte[]) : MonitoredServiceInfo[]

startService(token : byte[], serviceName : String) : void

stopService(token : byte[], serviceName : String) : void

restartService(token : byte[], serviceName : String) : void

pingAllMonitoredServices(token : byte[]) : void

pingService(token : byte[], serviceName : String) : void

createShellCommandQueuePerService() : boolean

getLocalServiceDiscoveryIntervalSec() : int

getLocalServicePollIntervalSec() : int

getNotificationGroupName(groupID: String) : String

getOpCenterName(opCtrID : Identifier) : String

getServiceNamesToMonitor() : String[]

getXMLConfigFileName() : String

m_props : Properties

m_notificationGroupID : String

m_message : String

get() : static WatchdogModule

-checkRights(token : byte[], cmdDesc : String) : void

createServiceAlert(serviceInfo : MonitoredServiceInfo, serviceAlertType : ServiceAlertType, desc : String) : void

getAlertCommandQueue() : CommandQueue

-getInitialMonitoredServiceInfo() : MonitoredServiceInfo[]

-getMonitoredServiceInfo(serviceName : String) : MonitoredServiceInfo

getNotificationCommandQueue() : CommandQueue

-getNotificationGroupName(groupID : String) : String

getServiceApp() : ServiceApplication

getShellCommandQueue(serviceName : String) : CommandQueue

-logUserCall(token : byte[], methodName : String, serviceName : String) : void

-processServiceStatus(serviceInfo : MonitoredServiceInfo) : void

queryAllMonitoredServicesAsynch() : void

queryMonitoredServiceAsynch(serviceInfo : MonitoredServiceInfo) : void

queryMonitoredServiceAsynch(serviceInfo : MonitoredServiceInfo) : void

resolveLocalService(serviceName : String) : ArrayList<Pair<Identifier, org.omg.CORBA.Object>>

sendGroupNotification(groupID : String, msg : String) : void

setLocalServiceOffers(newTable : Hashtable<String><ArrayList<Pair<Identifier><org.omg.CORBA.Object>>>) : void

m_module : static WatchdogModule

m_alertCommandQueue : CommandQueue

m_discoveryTimer : Timer

m_localServiceOffers : Hashtable<String><ArrayList<Pair<Identifier><org.omg.CORBA.Object>>>

m_monitoredServices : MonitoredServiceInfo[]

m_notificationCommandQueue : CommandQueue

m_props : WatchdogModuleProperties

m_serviceQueryCommandQueues : Hashtable<String><CommandQueue>

m_serviceQueryTimer : Timer

m_serviceShellCommandQueues : Hashtable<String><CommandQueue>

m_svcApp : ServiceApplication

m_queue : CommandQueue

m_serviceInfo : MonitoredServiceInfo

m_isAutoRestartCmd : boolean

m_serviceInfo : MonitoredServiceInfo

m_shellCommands : ShellCommand[]

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

ServiceApplication m_svcApp;

DefaultServiceApplicationProperties m_props;

-getLocalHostname() : String

-getIDAndNameFromOffer(offer:Offer) :

 Pair<Identifier,String>

Figure 5‑45. WatchdogServiceClasses (Class Diagram)
5.8.1.1.1 CHART2Service (Class)
The CHART2Service is an application that helps in installation and termination of the modules in CHART II system.

5.8.1.1.2 CreateServiceAlertCmd (Class)

This command is run from a command queue and calls the AlertManagerWrapper to attempt to create a Service alert.

5.8.1.1.3 DiscoverLocalServicesTask (Class)

This timer task is called to discover the services in the local (primary) trader that are on the same computer as the Watchdog Service.

5.8.1.1.4 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.8.1.1.5 PerformShellCommandsCmd (Class)

This command runs on a command queue and attempts to perform the specified sequence of operating system shell commands. If it is for an auto-restart command, it will also issue an optional alert and/or notification for the restart attempt.

5.8.1.1.6 QueryAllServicesTask (Class)

This timer task calls the module to query all monitored services by putting commands on each service's command queue.

5.8.1.1.7 QueryServiceCommand (Class)

This command executes from a CommandQueue, and calls the module to query the specified service.

5.8.1.1.8 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.8.1.1.9 SendNotificationCmd (Class)

This command runs from a command queue and calls the WatchdogModule to attempt to send a notification via the NotificationManagerWrapper.

5.8.1.1.10 Service (Class)

This interface is to allow remote administration of service applications.

5.8.1.1.11 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.8.1.1.12 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.8.1.1.13 WatchdogModule (Class)

This module handles all of the real Watchdog Service functionality. Unlike other ServiceApplicationModules that are run using a CHART2Service main class, this module must be run with the WatchdogServiceImpl being the main class.

5.8.1.1.14 WatchdogModuleProperties (Class)

This class provides access to data from the service's properties file.

5.8.1.1.15 WatchdogService (Class)

The Watchdog service interface. The Watchdog monitors other services found in the local trader and can perform commands on those services.

5.8.1.1.16 WatchdogServiceDelegateOperations (Class)

This interface contains the Watchdog-specific operations to be delegated to an object to implement. It is intended to be the same as WatchdogServiceOperations, except without extending ServiceOperations.

5.8.1.1.17 WatchdogServiceImpl (Class)

This class extends CHART2Service to add the WatchdogService functionality. It delegates all WatchdogService calls to the WatchdogModule via the delegate interface.
5.8.2 Sequence Diagrams

5.8.2.1 CreateServiceAlertCmd:execute (Sequence Diagram)

This diagram shows how a Service alert is created. The command queue calls the CreateServiceAlertCommand's exuecute() method, which calls the WatchdogModule to create the alert. The WatchdogModule obtains information from the MonitoredServiceInfo, the service alert type, and the alert description, and calls the AlertFactoryWrapper to create the alert. This calls the AlertFactory objects from the TraderGroup to create the alert.

[image: image65.emf]createServiceAlert(systemToken, serviceAlertType,

watchdogServiceID, serviceID, serviceName, statusCode,

lastStatusCodeChangeTime, alertDesc, initialVisibility)

Get statusCode, lastStatusCodeChangeTime, and serviceID

from m_serviceInfo.serviceStatus

AlertCreationResult if successful; otherwise

CHART2Exception, AlertTypeDisabledException, or AccessDenied

Log Success or Warning

System

CreateServiceAlertCmdWatchdogModuleTokenManipulatorServiceApplicationAlertFactoryWrapper

Get failure alert or auto-restart alert op center

ID/name from m_serviceInfo.serviceConfig

depending on serviceAlertType - this is the

initial visibility.

The service ID

may be a "null identiifer"

if the service has not been

queried since startup.

CreateServiceAlert will call

the AlertFactory objects from

found the trader group.

execute()

get()

createServiceAlert(

m_serviceInfo,

m_serviceAlertType,

m_alertDesc)

createSystemToken(name, site)

getServiceName()

getNetConnectionSite()

get()

Figure 5‑46. CreateServiceAlertCmd:execute (Sequence Diagram)
5.8.2.2 DiscoverLocalServicesTask:run (Sequence Diagram)
This diagram shows the discovery of local services. The local service CORBA object is obtained and its hostname is extracted from the IOR. Then the CHART2 Service objects are queried from the local trader, and each offer's IOR is checked to determine whether it has the same hostname as this service. If it does, the offer information is added to a list in a hash table. Then the module's local service offers table is replaced, and the first time this is done a Timer is created and the QueryAllServices task is scheduled for periodic execution. No checking for multiple services having duplicate names is done at this level.

[image: image66.emf]m_servicesQueryTimer :

Timer

QueryAllServicesTask

WatchdogModuleProperties[error querying trader]

getLocalServicePollIntervalSec()

SystemDiscoverLocalServicesTaskWatchdogModuleSmartTraderHere, typeName isSERVICE_TYPE_CHART2_SERVICE.valueand props areTRADER_ATTRIBUTE_ID.value andTRADER_ATTRIBUTE_NAME.valuerun()get()performTraderQuery(typeName, "TRUE", props, false, 0)

Offer[]

Get ID and name from offer

[not found]

create

create(serviceID, offer.reference)

[hostnames

not equal]

Skip

[service ref is null]Thread.sleep(1000)ArrayList

Pair

The modules are initialized beforethe Service object is activated in the POA,so if it's not activated yet wait for it to become active. get()getServiceCORBAObject()org.omg.CORBA.Object or nullcreate

getServiceApp()getORBSpecificUtil()getHostnameOfObject(orb, serviceObj)

getORB()getHostNameOfObject(orb, offer.reference)

get(serviceName)

ArrayList<Pair<Identifier, org.omg.CORBA.Object> or null

[not found]

put(serviceName, list)

add(pair)

[* for each

offer]

[service ref is null]setLocalServiceOffers(hashTable)

WatchdogServiceImplHashtable

ServiceApplicationORBSpecificcreate

scheduleAtFixedRate(

task, 0, pollIntervalMillis)

Store offers

The QueryAllServices task is scheduled

the first time setLocalServiceOffers()

is called (only). It will execute repeatedly

on the timer.

[m_servicesQueryTimer != null]

create

Figure 5‑47. DiscoverLocalServicesTask:run (Sequence Diagram)
5.8.2.3 PerformShellCommandsCmd:execute (Sequence Diagram)
This diagram shows how shell commands are executed. The command queue calls execute() and each command is executed by calling Java's Runtime.exec() method. StreamPumper objects are created to pipe the output and error streams of the new process into the output and error streams of the Watchdog service, and then we wait for the process to return and wait for the StreamPumper threads to end. Then the exit value (return code) for the process is compared against the allowed return codes for the command, and if successful the command desc is added to the list of successful command descs. If failed and the command is to abort on failure, it breaks the loop preventing subsequent commands from being executed. Then the thread sleeps for the specified amount of time before other command actions can be performed. If it was a restart operation and some commands were successful, a CreateServiceAlertCmd object is created and added to the alert command queue (if requested). Likewise, if requested, a SendNotificationCmd is created and added to the notification command queue.

[image: image67.emf]create(errStream, System.err)

start()

start()

Read Lines And

Print to Err Stream

Until Stream Empty

Read Lines And Print

To Output Stream

Until Stream Empty

waitFor()

run()

run()

join()

join()

exitValue()

[exit value not in cmd.allowedReturnCodes &&

cmd.abortSubsequentCommandsOnFail]

break

[cmd.postCommandDelaySec > 0]

Thread.sleep(cmd.postCommandDelaySec * 1000)

[command created]

getAlertCommandQueue()

[command created]

addCommand()

CreateServiceAlertCmd

WatchdogModule

alertQueue :

CommandQueue

notificationQueue :

CommandQueue

SendNotificationCmd

[* for each cmd]

[not auto restart command ||

successfulCommandDescs.size() == 0]

m_serviceInfo.serviceStatus.

numAutoRestartsSinceWatchdogStartup++

get()

[m_serviceInfo.serviceConfig.notifyOnAutoRestart]

create

CommandQueue

PerformShellCommandsCmdjava.lang.Runtime

outPumper:

StreamPumper

java.lang.Processs

The stream returned by getInputStream()

returns data piped from the OUTPUT

stream of the process.

The stream returned by getErrorStream()

returns data piped from the error stream

of the process.

errPumper:

StreamPumper

System

waitFor() waits

for the process

to terminate,

if necessary.

The system calls these StreamPumper

threads to run asynchronously.

Waits for the stream procesing threads to end.

execute

execCmd(cmd.commandLine)

getRuntime().exec(commandLine)

[problem creating process]

Exception

create

getInputStream()

InputStream

getErrorStream()

InputStream

create(inputStream, System.out)

[success]

Add To successfulCommandDescs list

[command created]

addCommand()

[command created]

getNotificationCommandQueue()

[m_serviceInfo.serviceConfig.alertOnAutoRestart]

create

Figure 5‑48. PerformShellCommandsCmd:execute (Sequence Diagram)
5.8.2.4 WatchdogModule:init (Sequence Diagram)
This diagram shows the WatchdogModule initialization. The module gets the singleton WatchdogServiceImpl and sets itself as the delegate for CORBA operations. Then it reads the properties file to get the service names to monitor, and reads/initializes the information about the monitored services from the XML file. If any error occurred reading the configuration, the module with throw an exception causing the service to shut down. A CommandQueue is created for each service to query the service, and the AlertFactoryWrapper and NotificationManagerWrapper are initialized. A command queue is created for sending notifications and another for creating alerts. A task is created for discovering local services and is added to a discovery timer. (The querying of the services will be triggered by the first successful discovery).

[image: image68.emf]create [alert command queue]

XMLConfigReaderMonitoredServiceInfo

getInitialMonitoredServiceInfo()

getMonitoredServicesFromConfigFile(xmlFileName, m_props)

[* for each service name from props file also in config hash map]

create

HashMap<String, MonitoredServiceConfig>

getLocalServiceDiscoveryIntervalSec()

m_discoveryTimer:

Timer

create [notification command queue]

getMaxRemoteTraderSourceUseMins()

initialize(orb, traderGroup, discInterval, maxRemoteServiceUseMins)

AlertFactoryWrapper

The AlertFactoryWrapper and

NotificationManagerWrapper are

created via the static get() call.

ServiceApplicationNotificationManager

Wrapper

get()

initialize(orb, traderGroup, discInterval, maxRemoteServiceUseMins)

getORB()

getTraderGroup()

get()

getServiceNamesToMonitor()

String[]

The first discovery is slightly delayed to allow this service

to publish itself in the trader. This should all but ensure

 that the service type will be registered even if no other

services are running, and that this service will be

published in the trader.

create

create

create

CommandQueue

[* for each monitored service]

create [service query command queue]

DiscoverLocalServicesTask

scheduleAtFixedRate(task, 5000, interval * 1000)

getXMLConfigFilename()

[error reading config]

throw

MonitoredServiceInfo[]

Store MonitoredServiceInfo[]

DefaultService

Application

WatchogModuleWatchdogServiceImplWatchdogModuleProperties

initialize(svcApp)

get()

setWatchdogDelegate(this)

Figure 5‑49. WatchdogModule:init (Sequence Diagram)
5.8.2.5 WatchdogModule:queryMonitoredServiceAsynch (Sequence Diagram)
This diagram shows how an asynchronous request to query a service is made. The CommandQueue for the service is retrieved, and a QueryServiceCommand object is created and added to the queue. Some time later on another thread, the command is executed and calls the WatchdogModule to query the service synchronously. See the queryMonitoredServiceSynch() diagram for more details.

[image: image69.emf]See the queryMonitoredServiceSynch sequencediagram for more details.WatchdogModuleWatchdogModuleCommandQueuem_serviceQueryCommandQueues :HashtableQueryServiceCommandget(monitoredServiceInfo.serviceName)CommandQueuecreate(monitoredServiceInfo, commandQueue)addSystemThis is called at some later time on a command queue thread.queryMonitoredServiceAsynch(monitoredServiceInfo)execute()queryMonitoredServiceSynch(monitoredServiceInfo)clear()

Figure 5‑50. WatchdogModule:queryMonitoredServiceAsynch (Sequence Diagram)
5.8.2.6 WatchdogModule:queryMonitoredServiceSynch (Sequence Diagram)
This diagram shows how a service is queried for status, which can be done either periodically as part of the monitoring process or as requested by a user. If the service has been called successfully, the Service reference will already be resolved; otherwise, the list of offers (matching the service name) from the latest trader query is retrieved and narrow() is called on each. In most cases there will only be one, but if there are multiple services running on the same machine the status is set to UNKONWN due to the ambiguity. If the Service is resolved (and unique) it is called to get the ServiceInfo. The status is then updated, and if the service is failed the flags and thresholds are checked for issuing an alert, notification, or auto-restart command. Note the times are kept to prevent multiple alert / notification / auto-restart attempts. These commands will execute asynchronously from a command queue to avoid tying up the monitoring (or calling) thread.

[image: image70.emf]This will return either the global

CommandQueue for all monitored

services or a per-service one,

based on a props file setting.

return from processServiceStatus()

QueriedServiceInfo

[success]

create

Return resolved Service references

create

[* for each offer object]

Update serviceInfo.monitoredServiceStatus

CreateServiceAlertCmd

SendNotificationCmd

PerformShellCommandsCmd

[service != null]

getServiceInfo()

queryMonitoredServiceSynch(serviceInfo)

[serviceInfo.serviceStatus.

queriedServiceInfo.length == 0]

resolveLocalServices()

narrow(obj)

Look up list of objects

from m_latestLocalServiceOffers

Service, null, Exception

[multiple Services resolved]

Set Status to SERVICE_FAILED

create

Set lastFailureAlertAttemptTime

Set lastFailureNotificationAttemptTime

create

m_alertCommandQueue.addCommand(issueAlertCmd)

m_notificationCommandQueue.addCommand(sendNotificationCmd)

Set lastFailureAutoRestartAttemptTime

shellCmdQueue.addCommand(performShellCommandsCmd)

getShellCommandQueue(serviceName)

System

WatchdogModule

[statusCode == SERVICE_FAILED && config.alertOnFailure &&

lastQueryAttemptTime - lastStatusCodeChangeTime >

 config.failureAlertThresholdSec &&

currentFailureAlertAttemptTime < lastStatusCodeChangeTime]

ServiceHelper

[statusCode == SERVICE_FAILED && config.notifyOnFailure &&

lastQueryAttemptTime - lastStatusCodeChangeTime >

 failureNotificationThresholdSec &&

currentFailureNotificationAttemptTime < lastStatusCodeChangeTime]

Service

[statusCode == SERVICE_FAILED &&

config.autoRestartOnFailure &&

lastQueryAttemptTime - lastStatusCodeChangeTime >

 failureAutoRestartThresholdSec &&

currentFailureAutoRestartAttemptTime <

 lastStatusCodeChangeTime]

CommandQueue

If there are multiple

services with the same

name, narrow and call

each of them to get rid of any

bad references for ones that

throw OBJECT_NOT_EXIST.

If multiple references exist

and pass that test,

it is ambiguous which Service

reference to use.

Use the Service ref from the

QueriedServiceInfo if available,

or the (single) resolved Service.

For any result:

- update last query attempt time

- increment the numQueriesAttempted

- update status code

- if status code changed, update

 lastStatusCodeChangeTime

Query successful.:

- set / replace QueriedServiceInfo

- copy statusCode and detailedStatus

 from QueriedServiceInfo to

 MonitoredServiceStatus

Query failed or not attempted::

- Set status to SERVICE_FAILED (if not already)

- increment numQueryFailures

- if OBJECT_NOT_EXIST, clear out the

 old QueriedServiceInfo

This stores the

Service reference,

queried ServiceInfo object,

query time, and response time.

processServiceStatus(monitoredServiceInfo)

If the Service reference

already existed in the status

use it. Otherwise, call

resolveLocalServices() to obtain

a new Service reference.

ServiceInfo

Figure 5‑51. WatchdogModule:queryMonitoredServiceSynch (Sequence Diagram)
5.8.2.7 WatchdogServiceImpl:getMonitoredServiceInfo (Sequence Diagram)
This diagram shows how the monitored service information is returned. The WatchdogServiceImpl handles the request and delegates the call to the WatchdogModule. This checks the user rights and creates new MonitoredServiceInfo objects, copying the status under lock, and returns the array.

[image: image71.emf]WatchdogServiceDelegateOperations

(WatchdogModule)

GUI

MonitoredServiceInfo

getMonitoredServiceInfo(token)

getMonitoredServiceInfo(token)

Check Rights

create

MonitoredServiceInfo[]

WatchdogServiceImpl

[WatchdogServiceDelegateOperations not set]

CHART2Exception

[no rights]

AccessDenied

copyServiceStatus(status)

[* for each

monitored service

in m_monitoredServices]

MonitoredServiceInfo[]

The status is copied while synchronized.

Figure 5‑52. WatchdogServiceImpl:getMonitoredServiceInfo (Sequence Diagram)
5.8.2.8 WatchdogServiceImpl:main (Sequence Diagram)
This diagram shows the startup of the Watchdog Service. The WatchdogServiceImpl must be the main class, and when its main() method is called, it creates an instance of itself and calls the base class (CHART2Service) start() method, which creates and initializes the DefaultServiceApp, and then gets or creates a persistent ID in a file. Then it calls activateInPOA() which is overridden by WatchdogServiceImpl to create and activate a POA tie class. (This is necessary to allow WatchdogServiceImpl to extend CHART2Service and pick up its functionality). Next CHART2Service calls addServiceTypesToTradingRepos() to add the service types to the Trading service. This is also overridden by WatchdogServiceImpl, and it calls the base class to register the CHART2 service type, then registers its own "WatchdogService" type. CHART2Service then registers the service object in the trader, using the service type name returned from getServiceTypeName(), which is also overridden by WatchdogServiceImpl to return the "WatchdogService" type name. Finally CHART2Service calls ORB.run() to start the service, and this is a blocking call that does not return as long as the service is running.

[image: image72.emf]Store Object Ref

Call ORB.run()

create, init(svcApp)addServiceTypes

ToTradingRepos()

addServiceTypes

ToTradingRepos()

Add "CHART2Service" type

Add "WatchdogService" type

getServiceTypeName()

"WatchdogService"registerObject(objRef,

m_id, serviceName,

serviceTypeName, false)

WatchdogServicePOATie

persistentPOA : POAServiceApplicationGet ID or Create and Store ID in service ID file

activateInPOA()

create(impl, poa)

getPOA(PERSISTENT_POA_NAME)

activate_with_id(id, poa)

org.omg.CORBA.Object

Init DiscoveryManagerCreate CommandQueue

createstart(args)createInit LoggingInit ORBcreateresolveLocalTradingService()Init ServiceApplicationModulesStart Resolve Traders Timer Task

Init POAsstart()See the sequence diagram

WatchdogModule:init

for details

This is a blocking call.

WatchdogModuleJavaWatchdogServiceImplCHART2Serviceinstance : WatchdogServiceImplDefaultServiceAppTraderGroupmain()

Figure 5‑53. WatchdogServiceImpl:main (Sequence Diagram)
5.8.2.9 WatchdogServiceImpl:pingAllMonitoredServices (Sequence Diagram)
This diagram shows the processing for a request to ping all monitored services. The WatchdogServiceImpl delegates the call to the WatchdogModule, which checks rights and then calls queryAllMonitoredServicesAsynch(), which in turn calls queryMonitoredServiceAsynch() for each monitored service. See the queryMonitoredServiceAsynch sequence diagram for details.

[image: image73.emf]WatchdogServiceDelegateOperations(WatchdogModule)pingAllMonitoredServices(token)Check RightspingAllMonitoredServices(token)[WatchdogServiceDelegateOperations not set]CHART2Exception[no rights]AccessDeniedqueryAllMonitoredServicesAsynch()queryMonitoredServiceAsynch()[* for eachmonitored service inm_monitoredServices]See the queryMonitoredServiceAsynch()sequence diagram for details.return from queryAllMonitoredServicesAsynch()GUIWatchdogServiceImpl

Figure 5‑54. WatchdogServiceImpl:pingAllMonitoredServices (Sequence Diagram)
5.8.2.10 WatchdogServiceImpl:pingService (Sequence Diagram)
This diagram shows the processing for a request to ping a monitored service. The WatchdogServiceImpl delegates the call to the WatchdogModule, which checks rights, looks up the MonitoredServiceInfo for the specified service, and then calls queryMonitoredServiceAsynch(). See the queryMonitoredServiceAsynch sequence diagram for details.

[image: image74.emf]GUI

WatchdogServiceImplWatchdogServiceDelegateOperations(WatchdogModule)See the queryMonitoredServiceAsynch()

sequence diagram for details.

pingService(token, serviceName)

Check Rights

pingService(token, serviceName)

[WatchdogServiceDelegateOperations not set]

CHART2Exception

[no rights]

AccessDenied

getMonitoredServiceInfo(serviceName)

queryMonitoredServiceAsynch(

monitoredServiceInfo)

MonitoredServiceInfo

[service not monitored]

SpecifiedObjectNotFound

Figure 5‑55. WatchdogServiceImpl:pingService (Sequence Diagram)
5.8.2.11 WatchdogServiceImpl:restartService (Sequence Diagram)
This diagram shows the processing for a request to restart a monitored service. The WatchdogServiceImpl delegates the call to the WatchdogModule, which checks rights and looks up the MonitoredServiceInfo for the specified service. It then creates a PerformShellCommandsCmd object, passing in the restart commands from the configuration, and adds the command to the service's shell command queue for asynchronous execution.

[image: image75.emf]GUI

WatchdogServiceImplWatchdogServiceDelegateOperations(WatchdogModule)[service not monitored]

SpecifiedObjectNotFound

restartService(token, serviceName)

Check Rights

restartService(token, serviceName)

[WatchdogServiceDelegateOperations not set]

CHART2Exception

[no rights]

AccessDenied

getMonitoredServiceInfo(serviceName)

MonitoredServiceInfo

PerformShellCommandsCmd

CommandQueueThis returns a command queue for executing

shell commands for the service. Depending on

a properties setting, this command queue may

be global for all monitored services, or may be

allocated for each service.

create(serviceInfo,

serviceInfo.serviceConfig.serviceRestartCommands,

false)

getShellCommandQueue(serviceName)

add(command)

Figure 5‑56. WatchdogServiceImpl:restartService (Sequence Diagram)
5.8.2.12 WatchdogServiceImpl:startService (Sequence Diagram)
This diagram shows the processing for a request to start a monitored service. The WatchdogServiceImpl delegates the call to the WatchdogModule, which checks rights and looks up the MonitoredServiceInfo for the specified service. It then creates a PerformShellCommandsCmd object, passing in the start commands from the configuration, and adds the command to the service's shell command queue for asynchronous execution.

[image: image76.emf]GUIWatchdogServiceImplWatchdogServiceDelegateOperations(WatchdogModule)This returns a command queue for executingshell commands for the service. Depending on a properties setting, this command queue maybe global for all monitored services, or may be allocated for each service.CommandQueuePerformShellCommandsCmdCheck RightsstartService(token, serviceName)[WatchdogServiceDelegateOperations not set]CHART2Exception[no rights]AccessDeniedgetMonitoredServiceInfo(serviceName)MonitoredServiceInfocreate(serviceInfo, serviceInfo.serviceConfig.serviceStartCommands,false)getShellCommandQueue(serviceName)add(command)[service not monitored]SpecifiedObjectNotFoundstartService(token, serviceName)

Figure 5‑57. WatchdogServiceImpl:startService (Sequence Diagram)
5.8.2.13 WatchdogServiceImpl:stopService (Sequence Diagram)
This diagram shows the processing for a request to stop a monitored service. The WatchdogServiceImpl delegates the call to the WatchdogModule, which checks rights and looks up the MonitoredServiceInfo for the specified service. It then creates a PerformShellCommandsCmd object, passing in the stop commands from the configuration, and adds the command to the service's shell command queue for asynchronous execution.

[image: image77.emf]GUIWatchdogServiceImplWatchdogServiceDelegateOperations(WatchdogModule)This returns a command queue for executingshell commands for the service. Depending on a properties setting, this command queue maybe global for all monitored services, or may be allocated for each service.CommandQueuePerformShellCommandsCmdCheck RightsstopService(token, serviceName)[WatchdogServiceDelegateOperations not set]CHART2Exception[no rights]AccessDeniedgetMonitoredServiceInfo(serviceName)MonitoredServiceInfocreate(serviceInfo, serviceInfo.serviceConfig.serviceStopCommands,false)getShellCommandQueue(serviceName)add(command)[service not monitored]SpecifiedObjectNotFoundstopService(token, serviceName)

Figure 5‑58. WatchdogServiceImpl:stopService (Sequence Diagram)
5.9 GUI Alerts - Data

5.9.1 Class Diagrams

5.9.1.1 data.alerts.classes (Class Diagram)

This diagram shows classes related to alerts that are used to store alerts in the data model. For R3B2, one new alert type is being added, as annotated on the diagram. The remainder of the classes shown on this diagram existed prior to R3B2.

[image: image78.emf]WebServiceAlert

ServiceAlertData

1

1

New Aug 09

New for R3B3

WebExternalConnectionAlert

updated for R3B3for addition of failuretypeExecuteScheduledActionsAlertData

1

Updated for R3B3WebExecuteScheduledActionsAlert1

111Alert«interface»UnhandledResourcesAlertData«datatype»EventStillOpenAlertData«struct»111DuplicateEventAlertData«struct»11

AlertData«datatype»1WebEventStillOpenAlertWebUnhandledResourcesAlertWebDeviceFailureAlert1WebAlertWebAlertHistoryWebDuplicateEventAlertWebGenericAlert1WebAlertType«enumeration»TravelTimeAlertData

«struct»

1

WebExternalEventAlertWebTollRateAlert

111

1TollRateAlertData

«struct»

1

DeviceFailureAlertData

«struct»

11

ExternalConnectionAlertData

«struct»

ExternalEventAlertData

«struct»

*1WebTravelTimeAlert

1

1

1m_alertTypem_namem_systemProfilePrefixm_defaultDefaultAcceptTimeMinutesm_defaultMaxAcceptTimeMinutesm_defaultDefaultDelayTimeMinutesm_defaultEscalationTimeMinutesm_defaultEnabledFlagm_defaultAutoEscalateDisabledDeviceFailureDuplicateEventEventStillOpenGenericUnhandledResourcesExecuteScheduledActionsExternalConnectionExternalEventTollRateTravelTimegetID():IdentifiergetAlertRef():AlertgetDescription():StringisAccepted() : booleanisClosed() : booleanisDelayed() : booleanisNew() : booleangetCreationTime() : longgetClosedTime() : longgetNextActionTime():longgetResponsibleUser():StringgetResponsibleCenter():WebOpCentergetOpCenterVisibility():WebOpCenter[]getNextOpCenterVisibility():WebOpCenter[]getDetailsPage() : StringgetAlertHistory() : WebAlertHistory[]getWebAlertType():WebAlertTypegetDetailsPage():StringisDMS():booleanisTSS():booleangetDevice():WebDevicegetDMS():WebDMSgetTSS():WebTSSisCommFailure():booleanisHWFailure():booleanWebAlertHistory(hist:AlertHistory)getTimestamp() : longgetOpCenterName() : StringgetOperatorName() : StringgetDescriptiveText():Stringm_descriptiveText:Stringm_timestamp:longm_operatorName:Stringm_opCenterName:StringgetDetailsPage():StringgetNewerEvent():WebTrafficEventgetOlderEvent():WebTrafficEventgetDetailsPage():String

getResolveAction():String

getExternalConnectionID():String

isWarning():boolean

getAlertStatusChangeTime():Date

getAlertStatusConfirmTime():Date

getDetailsPage():StringgetDetailsPage():String

getResolveAction():String

getActions():WebActionData[]

getActionData():ActionData[]

getSchedule():WebSchedule

getDetailsPage():StringgetOpCenter():WebOpCentergetDetailsPage():String

getResolveAction():String

getExternalEvent():WebTrafficEvent

getTrafficEventRule():WebTrafficEventRule

getDetailsPage():StringgetEvent():WebTrafficEventgetDetailsPage():String

getResolveAction():String

getTravelRoute():WebTravelRoute

getDetailsPage():String

getResolveAction():String

getTravelRoute():WebTravelRoute

getAlertedTravelTimeStr():String

getAlertedTravelTimeEffTime():Date

getTravelTimeAlertLimitStr():String

isFailure():boolean

isRestart():boolean

getDetailsPage():String

getResolveAction():String

getWatchdog():WebWatchdogService

getService():WebCHARTService

getAlertedStatus():ServiceStatus

getAlertedStatusChangeTime():Timestamp2

Figure 5‑59. data.alerts.classes (Class Diagram)
5.9.1.1.1 Alert (Class)
This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage an alert.

5.9.1.1.2 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.9.1.1.3 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.9.1.1.4 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.9.1.1.5 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.9.1.1.6 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an ExecuteScheduledActionsAlert.

5.9.1.1.7 ExternalConnectionAlertData (Class)

This IDL structure contains data specific to an External Connection Alert, e.g., the ID of the interface which is having trouble and a flag indicating whether the connection is in failure or warning status, the timestamp it transitioned. (The GUI displays additional data which is best acquired from the GUI's object cache.) (Text in the base AlertData structure provides a textual description and alert management data.)

5.9.1.1.8 ExternalEventAlertData (Class)

This IDL structure contains data specific to an External Event Alert, e.g., the ID of the event and the ID of the first rule found that requested an alert be sent. (Text in the base AlertData structure provides a textual description and alert management data.)

5.9.1.1.9 ServiceAlertData (Class)

This class contains data specific to a ServiceAlert. It's possible that the serviceID could be the null identifier if the watchdog was not able to contact the service at least once.

5.9.1.1.10 TollRateAlertData (Class)

This IDL structure contain data specific to a Toll Rate Alert, e.g., the travel route which no longer has data for its toll rate. (Text in the base AlertData structure provides a textual description and alert management data.)

5.9.1.1.11 TravelTimeAlertData (Class)

This IDL structure contains data specific to a Travel Time Alert, e.g., the travel time limit and the travel time which exceeded the limit. (Text in the base AlertData structure provides a textual description and alert management data.)

5.9.1.1.12 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an UnhandledResourcesAlert.

5.9.1.1.13 WebAlert (Class)

This class is used to wrap a CORBA Alert object so that its data may be cached in the CHART GUI servlet and to allow its data to be accessed from within a Velocity template.

5.9.1.1.14 WebAlertHistory (Class)

This class is used to wrap AlertHistory data to allow it to be accessed from within a Velocity template.

5.9.1.1.15 WebAlertType (Class)

This enumeration indentifies the alert types supported by the system along with information specific to each alert type that helps in using generic code to process all alert types. For R3B2 the ExecuteScheduledActions alert type is added.

5.9.1.1.16 WebDeviceFailureAlert (Class)

This class is used to wrap a DeviceFailureAlert CORBA object and provide access to data that is specific to this type of alert.

5.9.1.1.17 WebDuplicateEventAlert (Class)

This class is used to wrap a DuplicatEventAlert and provide access to its type specific data.

5.9.1.1.18 WebEventStillOpenAlert (Class)

This class is used to wrap an EventStillOpenAlert and provide access to its type specific data.

5.9.1.1.19 WebExecuteScheduledActionsAlert (Class)

This class is used to cache data for an ExecuteScheduledActionsAlert in the GUI. It provides access to the alert data and overrides the abstract methods of WebAlert to provide a details page and resolve action specific to this alert type.

5.9.1.1.20 WebExternalConnectionAlert (Class)

This class is a GUI wrapper for an ExternalConnection alert. It provides access to data contained in an ExternalConnectionAlertData object.

5.9.1.1.21 WebExternalEventAlert (Class)

This class is a GUI wrapper for an ExternalEventAlert. It provides access to data contained in an ExternalEventAlertData object.

5.9.1.1.22 WebGenericAlert (Class)

This class is used to wrap a GenericAlert (manual alert).

5.9.1.1.23 WebServiceAlert (Class)

This class is a wrapper for a ServiceAlert, used to allow its data to be cached and displayed in the GUI.

5.9.1.1.24 WebTollRateAlert (Class)

This class is a GUI wrapper for a TollRateAlert. It provides access to data contained in a TollRateAlertData object.

5.9.1.1.25 WebTravelTimeAlert (Class)

This class is a GUI wrapper for a TravelTimeAlert. It provides access to data contained in an TravelTimeAlertData object.

5.9.1.1.26 WebUnhandledResourcesAlert (Class)

This class is used to wrap an UnhandledResourcesAlert and provide access to its type specific data.

5.9.2 Sequence Diagrams

None

5.10 GUI Alerts - Servlet

5.10.1 Class Diagrams

None

5.10.2 Sequence Diagrams

5.10.2.1 chartlite.servlet.alerts:resolveAlert (Sequence Diagram)

This diagram shows the processing that is done when the servlet receives a request to resolve an alert. This request is issued when the user clicks the resolve button for an alert on the home page, or the user clicks the resolve link on an alert details page. The user's rights are checked, and if they don't have the right required to manage alerts, an error page is returned. The alertID parameter is retrieved from the request, and this is used to find the WebAlert in the servlet's object cache. If the parameter is missing or the alert cannot be found in the object cache, an error page is returned. The getResolutionAction() method is called on the WebAlert. Alert type specific subclasses of WebAlert override this method to provide the query portion of a url used to point the user to right page where they can resolve the alert. After the resolution url is constructed using the query string retrieved from the WebAlert subclass, a redirect to that URL is performed. Following are the resolve actions that each subclass will use:

WebDeviceFailureAlert: viewDMSProps (DMS device), viewTSSProps (TSS device)

WebDuplicateEventAlert: displayMergeEventSelectTargetForm - pass the events in the alert as the event1 and event2 parameters of the request.

WebManualAlert: viewAlertDetails

WebOpenEventReminderAlert: viewEventDetails - pass the event ID in the alert as the eventID parameter of the request.

WebUnhandledResourcesAlert: getUncontrolledResources

WebExecuteScheduledActionsAlert: The redirect depends on the number of actions in the schedule that fired the alert. If zero actions to execute, viewAlertDetails is the redirect action. If there are more than 1 action, getExecuteScheduledActionsForm is the redirect action. If there is a single Open Event action, viewEventDetails is the redirect action (pass the pending event ID specified in the Open Event action).

WebExternalConnectionAlert: show the connection status page

WebExternalEventAlert: show the details page for the external event

WebTollRateAlert: show the details page for the travel route that contains the toll rate source that caused the alert to be generated.

WebTravelTimeAlert: show the details page of the travel route whose travel time exceeded the specified alert travel time.

WebServiceAlert: show the details page for the service if service ID is provided in alert. Otherwise show the details page of the watchdog.

[image: image79.emf]WebAlert or null

getResolveAction()

User

WebAlertNavLinkRights

boolean

getParameter("alertID")

Classes derived from WebAlert override this method to provide the query

portion of a URL that is specific to the alert type. Following are the resolve actions

for each alert type:

WebDeviceFailureAlert: viewDMSProps (DMS device), viewTSSProps (TSS device)

WebDuplicateEventAlert: displayMergeEventSelectTargetForm - pass the events

in the alert as the event1 and event2 parameters of the request.

WebManualAlert: use default (close alert)

WebOpenEventReminderAlert: viewEventDetails - pass the event ID in the alert

as the eventID parameter of the request.

WebUnhandledResourcesAlert: getUncontrolledResources

WebExecuteScheduledActionsAlert: if more than 1 scheduled action, display

Execute Schedule Actions form. If only 1 action, and the action is an

Open Event Action, show the pending alert details page for that event. If

zero actions in the schedule, show the alert details page.

WebExternalConnectionAlert: show the connection status page

WebExternalEventAlert: show the details page for the external event

WebTollRateAlert: show the details page for the travel route that contains the

toll rate source that caused the alert to be generated.

WebTravelTimeAlert: show the details page of the travel route whose travel time

exceeded the specified alert travel time.

WebServiceAlert: show the details page for the service if service ID is provided in alert.

Otherwise show the details page of the watchdog.

AlertReqHdlr

resolveAlert requestreceived by servlet due to user clicking resolvebutton for alert on home

page, or user clicking

resolve link on alert

details page.

RequestHandlerSupporter

new

HttpServletRequest

redirect to URL created with query

string provided by getResolutionAction()

Identifier

[alert not found in cache]

Error.vm

resolveAlert()

canManageAlerts()

getCachedObject()

[missing parameter]

Error.vm

[no rights]

Error.vm

Figure 5‑60. chartlite.servlet.alerts:resolveAlert (Sequence Diagram)

5.11 GUI CHART Service - data

5.11.1 Class Diagrams

5.11.1.1 ChartServiceDataClasses (Class Diagram)

This diagram shows classes used to wrap service related classes such that they can be stored in the GUI cache and can be displayed on GUI web pages.

[image: image80.emf]1

1

0..1

Will have queried

service info after

watchdog has

queried from

service once.

DataModel*1Service

«interface»

DiscoverServiceClassesCommandWebWatchdogService11discovers11ServiceIdentificationInfo

1

DynListSubject«interface»11

0..1

1

1

1

WebQueriedServiceInfo

One list of commands

for each action:

start

stop

restart

auto-restart

1

WebServiceStatusCode«enumeration»WatchdogPollStatus1Will have ServiceIdentificationInfo after

being successfully contacted.

11

1MonitoredServiceStatus

1

*

1

WebMonitoredServiceConfig

MonitoredServiceConfig

WebShellCommand

ShellCommand

11

1

1

11

*

1

*

1

*

1

WebCHARTService

QueueableCommand«interface»WatchdogService«interface»serviceID :byte[]

serviceName : String

connectionSite : String

versionInfo : ApplicationVersion

getMonitoredServices():WebCHARTService[]getLastPollStatus():WatchdogPollStatusupdateServiceInfo(info:ServiceInfo):voidupdateMonitoredServicesStatus():voidisWatchdog():boolean-m_status:WebServiceStatusCode-m_pollTimestampSec:long-m_pollResponseTimeSec:longgetServiceName():String

getLastPollTime():Date

getLastPollResult():WebServiceStatusCode

getStatusCode():WebServiceStatusCode

getStatusChangeTime():Date

getDetailedStatus():String[]

getQueriedServiceInfo():WebQueriedServiceInfo

getMonitoringConfig():WebMonitoredServiceConfig

updateidentificationInfo():void

monitoredInfoUpdated(info:MonitoredServiceInfo):void

setWatchdog(watchdog:WebWatchdogService):void

isWatchdog():boolean

isTemp():boolean

-m_serviceName:String

-m_serviceID:IdentifiergetIDLValue():int

OK

FAILED

UNKNOWN

getServiceRef():Service

getServiceInfoQueryTime():Date

getServiceInfoQueryResponseTime():long

getServiceID():Identifier

getNetConnectionSite():String

getVersion():WebApplicationVersion

getStartTime():Date

getUpTime():Date

getCurrentLogLevel():int

getJavaAvailableHeapKB():long

getStatusCode():WebServiceStatusCode

getDetailedStatus():String[]

getPollIntervalSec():long

getServiceStopCommands():WebShellCommand[]

getNotifyOnFailure():boolean

...()

getCommandLine():String

getMinSuccessReturnCode():int

...()

Figure 5‑61. ChartServiceDataClasses (Class Diagram)
5.11.1.1.1 DataModel (Class)
The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.11.1.1.2 DiscoverServiceClassesCommand (Class)

This class is a QueuableCommand that when run discovers WatchdogService objects in the trader. Objects not previously discovered are wrapped with a WebWatchdogService and stored in the data model. Objects previously discovered are updated.

5.11.1.1.3 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a dynamic list.

5.11.1.1.4 MonitoredServiceConfig (Class)

Configuration information for a service monitored by a Watchdog service.

5.11.1.1.5 MonitoredServiceStatus (Class)

Information about the status of a service monitored by a Watchdog service.

5.11.1.1.6 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.11.1.1.7 Service (Class)

This interface is to allow remote administration of service applications.

5.11.1.1.8 ServiceIdentificationInfo (Class)

This structure contains identification information for a service.

5.11.1.1.9 ShellCommand (Class)

Represents settings for calling the operating system to execute a shell command.

5.11.1.1.10 WatchdogPollStatus (Class)

This class stores data pertaining to the last time a watchdog service is called by the GUI to get the status of the services the watchdog monitors. Note that watchdogs watch each other, but only locally. Storing information about the GUI's ability to access the watchdog provides another set of data to help determine the availability of the watchdog, as the GUI accesses the watchdog over a LAN or WAN and while a local watchdog might be able to access another local watchdog without a problem, it may be the case where the GUI can't access a watchdog due to networking or other problems.

5.11.1.1.11 WatchdogService (Class)

The Watchdog service interface. The Watchdog monitors other services found in the local trader and can perform commands on those services.

5.11.1.1.12 WebCHARTService (Class)

This class is a wrapper for a MonitoredServiceInfo CORBA struct. It provides access to data obtained from a WatchdogService regarding a service the watchdog monitors. Access to the Service CORBA object for the service can be obtained via this object if the watchdog has been able to contact the service at least once to obtain its basic information and status. This object provides access to status data, both from the watchdog regarding its ability to contact the service, and from the service itself (assuming the watchdog could obtain the information from the service).

5.11.1.1.13 WebMonitoredServiceConfig (Class)

This class is a wrapper for the MonitoredServiceConfig CORBA struct. It provides getter methods for each member of the struct to allow the data to be displayed on a GUI web page.

5.11.1.1.14 WebQueriedServiceInfo (Class)

This class is a wrapper for the QueriedServiceInfo CORBA struct. This provides access to data about the service that is available only after the service has been contacted.

5.11.1.1.15 WebServiceStatusCode (Class)

This enumeration is a wrapper for a ServiceStatusCode value as defined in the IDL.

5.11.1.1.16 WebShellCommand (Class)

This class is a wrapper for the ShellCommand CORBA struct and provides accessor methods so that its data can be displayed on a GUI web page.

5.11.1.1.17 WebWatchdogService (Class)

This class is a wrapper for a CORBA WatchdogService object. It provides access to the data for use in the GUI.

5.11.2 Sequence Diagrams

5.11.2.1 ChartServices:Discovery (Sequence Diagram)

This diagram shows the processing that is done during the GUI discovery of service classes. A trader group is used to obtain all CORBA objects in the system that implement the Service interface. The id and name of each service is obtained from the trader offer. An attempt is made to narrow the object reference as a WatchdogService. If that fails, an attempt is made to narrow the object reference as a Service. If both fail, then we continue with the next offer. Otherwise, we look for an existing object with the same ID in the data model, and if not found we create an appropriate wrapper object (WebWatchdogService or WebCHARTService) and place it in the data model. We call the wrapper object (the new one or the one found in the data model) and tell it to update its ServiceIdentificationInfo, which it retrieves from the CORBA object it wraps. After all offers have been processed in this manner, all WebWatchdogService objects are obtained from the GUI data model and each is called to have it update its monitored service info. This is the information about the services it monitors. Details of this operation can be found on the WebWatchdogService:updateMonitoredServiceStatus sequence diagram.

[image: image81.emf]ServiceIdentificationInfo or error

getObjectsOfType(WebWatchdogService.class)

updateMonitoredServiceStatus()

[for each

offer]

Service or null

If narrowed to a WatchdogService

If narrowed to a Service

WebCHARTService

ServicegetObject(serviceID)

WebCHARTService or null

[not found in data model]

create(Service, name, id)

updateIdentificationData()

getServiceIdentificationInfo()

[no error]

update ID info

WatchdogService or null

get service id and name from

offer properties

WebWatchdogService or null

[not found in data model]

create(WatchdogService, name, id)

[not found in data model]

objectAdded()

[found in data model]

objectUpdated()

WebWatchdogService[]

[for each

WebWatchdogService]

DiscoveryServiceClassesCommandDiscoveryDriverTraderGroupWatchdogServiceHelperDataModelWebWatchdogService

WatchdogServiceServiceHelperexecute()findAllObjectsOfType(SERVICE_TYPE_CHART2_SERVICE)

Offer[]

narrow(offer.reference)

can't narrow

as Watchdog

or Service

getObject(serviceID)

[not a watchdog] narrow()

See the WebWatchdogService:updateMonitoredServiceStatus

sequence diagram for details.

Figure 5‑62. ChartServices:Discovery (Sequence Diagram)
5.11.2.2 WebWatchdogService:updateMonitoredServiceStatus (Sequence Diagram)
This diagram shows the processing that takes place when a WebWatchdogService is called to update its monitored services status (the status for the services monitored by the watchdog). This processing is called during discovery, and is also called by a polling thread in the servlet. The server side WatchdogService object is called to obtain its monitored services status, and the result of that call is stored in the watchdog as its last GUI side polled status. This is for informational purposes only and may be useful information, as the monitored services status (which will exist for watchdogs as they are monitored by another watchdog) is obtained by polling the watchdog locally, while the GUI is located on a different server from the watchdog and therefore requires the use of the network. If the monitored services information is obtained from the WatchdogService object, a new ArrayList is created to store references to WebCHARTService objects for each service monitored by the watchdog. Each MonitoredServiceInfo struct is then processed. Each MonitoredServiceInfo object contains a structure that will only be present if the watchdog was able to contact the service at least once. If this data is missing, the WebWatchdogService won't be able to find the corresponding WebCHARTService in the data model because it doesn't have the ID of the service. Even if the MonitoredServiceInfo object is complete, the corresponding WebCHARTService may not be found in the data model. In either of these cases, a temporary WebCHARTService object is created with the available data and stored in the ArrayList of WebCHARTServices. In the normal case, where the WebCHARTService corresponding to the MonitoredServiceInfo is found in the data model, it is called with the MonitoredServiceInfo so it can update its info and status, and it too is stored in the list of services monitored by the watchdog. The data model is called to notify it that the object has been updated. After processing each MonitoredServiceInfo object, the newly create array list is stored in the WebWatchdogService as its list of monitored services, and the method returns.

[image: image82.emf]update WatchdogPollStatusWebCHARTService[error]returnWebCHARTService

If no queried status in the monitored service info, we can't lookup objectin data model, so create a temporary wrapper that at least has its name, net connection site of the watchdog, and the other status from the watchdog..If queried status exists, but service not found in the data model,

create a temporary wrapper, which will be fairly complete. Don't

store in the data model, however, because it might be a watchdog

service and we don't want to have it in the data model with the

wrong wrapper.

[WebCHARTService found in data model]monitoredInfoUpdated(MonitoredServiceInfo)store the variousstructs includedin the enclosing struct[no queried status data]

create(name, net conn site, MonitoredServiceInfo)

add(WebCHARTService)

[not found in data model]

create(MonitoredServiceInfo)

setWatchdog(this)

[service in data model]

objectUpdated(id)

replace existing ArrayList member

with the instance created

in this method

[for each

MonitoredServiceInfo]

SystemWebWatchdogServiceWatchdogServiceDataModelArrayList<WebCHARTService>updateMonitoredServiceStatus()getMonitoredServicesInfo()MonitoredServiceInfo or error[serviceStatus.queriedServiceInfo.length == 1]getObject(service id)WebCHARTService or nullsort ArrayList by sevice name

create

Figure 5‑63. WebWatchdogService:updateMonitoredServiceStatus (Sequence Diagram)

5.12 GUI CHART Service - servlet

5.12.1 Class Diagrams

5.12.1.1 ChartServiceServletClasses (Class Diagram)

This diagram shows classes related to actions in the chart GUI servlet related to CHART services.

[image: image83.emf]0..11has global filter to allow show and hide of watchdogsNonWatchdogFilter

1111111createsDynListComparator«interface»DefaultDynListCol170..1ServiceLastStatusChangeFilter1Use this for net connectionsite column.WebCHARTService1returns lis ofServiceStatusFilterServiceUpTimeFilterTextValueColFilterMonitorServicesReqHdlrServicesPingThreadjava.lang.ThreadServicesDynListSupporterDynListDelegateSupporter«interface»DefaultDynListDynListReqHdlrDelegateServiceLastPingTimestampFilterBaseDynListFilterThread used to process theresolveTradersAll request.111ServiceDynListComparator111createDynList()getDynListSubjects()getFilterValue()processMonitorServices():StringprocessPingService():StringprocessPingServiceViaWatchdog():StringprocessRemoveService():StringprocessResolveTraders():StringprocessResolveTradersAll():StringprocessSetServiceLogLevel():StringprocessShutdownService():StringprocessViewServiceDetails():StringprocessViewWatchdogDetails():StringprocessStartService():StringprocessRestartService():StringprocessPingSitesServices():StringprocessFilterWatchdogs():StringenterFrequentMode():voidrun():voidshutdown():voidSORT_TYPE_NAME:intSORT_TYPE_NET_CONN_SITE:intSORT_TYPE_STATUS:intSORT_TYPE_STATUS_CHANGE:intSORT_TYPE_UPTIME:intSORT_TYPE_LAST_POLL_TIME:intSORT_TYPE_LAST_RESULT:intFILTER_VALUE_NONEFILTER_VALUE_<_1_MINFILTER_VALUE_<_5_MINSFILTER_VALUE_<_10_MINSFILTER_VALUE_<_30_MINSFILTER_VALUE_<_1_HOURFILTER_VALUE_>_1_HOURFILTER_VALUE_>_4_HOURSFILTER_VALUE_>_8_HOURSFILTER_VALUE_OKFILTER_VALUE_FAILEDFILTER_VALUE_UNKNOWNFILTER_VALUE_NONEFILTER_VALUE_<_1_HOURFILTER_VALUE_<_4_HOURS

FILTER_VALUE_<_8_HOURS

FILTER_VALUE_<_1_DAY

FILTER_VALUE_<_2_DAYS

FILTER_VALUE_<_3_DAYS

FILTER_VALUE_<_4_DAYS

FILTER_VALUE_<_5_DAYS

FILTER_VALUE_<_6_DAYS

FILTER_VALUE_<_1_WEEK

FILTER_VALUE_>_1_WEEK

FILTER_VALUE_>_2_WEEKS

FILTER_VALUE_>_3_WEEKS

FILTER_VALUE_>_4_WEEKS

FILTER_VALUE_NONEFILTER_VALUE_<_1_HOURFILTER_VALUE_<_4_HOURSFILTER_VALUE_<_8_HOURSFILTER_VALUE_<_1_DAYFILTER_VALUE_<_2_DAYSFILTER_VALUE_<_3_DAYSFILTER_VALUE_<_4_DAYSFILTER_VALUE_<_5_DAYSFILTER_VALUE_<_6_DAYSFILTER_VALUE_<_1_WEEKFILTER_VALUE_>_1_WEEKFILTER_VALUE_>_2_WEEKSFILTER_VALUE_>_3_WEEKSFILTER_VALUE_>_4_WEEKS-m_col:DynListCol

Figure 5‑64. ChartServiceServletClasses (Class Diagram)
5.12.1.1.1 BaseDynListFilter (Class)
This abstract class provides a base implementation of the DynListFilter interface.

5.12.1.1.2 creates (Association)

5.12.1.1.3 DefaultDynList (Class)

This class provides a default implementation of the DynList interface. It supports a collection of columns, a collection of global filters, and a collection of subjects. Filters in this list are treated additively - that is, a subject must pass all filters to be displayed.

5.12.1.1.4 DefaultDynListCol (Class)

This class provides a default implementation of the DynListCol interface. This column is constructed with a string property name for which subjects are expected to provide a value. By default, this column uses a SubjectTextPropertyComparator, which means a string comparison of the property values provided by the subjects for this column is used. You may optionally set a different comparator. Multiple values for this column (from a single subject) are supported.

5.12.1.1.5 DynListComparator (Class)

This interface is implemented by classes that are used to sort dynamic lists.

5.12.1.1.6 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.12.1.1.7 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter dynamic lists can be passed from a request handler to this class, provided the URL used for the requests contain parameters required by this class, such as the id of the list, the property name, and/or the filter value.

5.12.1.1.8 java.lang.Thread (Class)

This class represents a java thread of execution.

5.12.1.1.9 MonitorServicesReqHdlr (Class)

This class is a request handler that handles requests related to viewing CHART service status.

5.12.1.1.10 NonWatchdogFilter (Class)

This class is a dyn list filter used as a global filter to show only services that are not watchdogs. The passesFilter method of this class will only pass services that are NOT watchdogs. So this filter is meant to be added to the dyn list as a global filter when watchdogs are to be hidden, and removed from the dyn list when watchdogs are to be shown.

5.12.1.1.11 ServiceDynListComparator (Class)

This class is a dynamic list comparator that can be used for any column of the services dynamic list. The sort type to be done by the comparator will be passed at construction. Secondary sorts will be done when the primary sort results in equality, with the secondary sorts being as follows. In most cases the secondary sort is by net connection site and then by service name. The exceptions to this rule are When sorting by service name or net connection site. When sorting by service name, the secondary sort is by net connection site. When sorting by net connection site, the secondary sort is by service name, however monitoring agents will be listed before other services with the same connection site.

5.12.1.1.12 ServiceLastPingTimestampFilter (Class)

This class is a filter used for the timestamp columns included in the services dynamic list. This includes the time of last poll and the status timestamp.

5.12.1.1.13 ServiceLastStatusChangeFilter (Class)

5.12.1.1.14 ServicesDynListSupporter (Class)

This class provides support to the DynListReqHdlrDelegate to allow the delegate to be used to display the service status dynamic list.

5.12.1.1.15 ServicesPingThread (Class)

This class is being repurposed for LevA687. It existed in a prior form to ping each CHART Service. For LevA 687 it is changed to call each watchdog service to get statistics about each service the watchdog is watching.

5.12.1.1.16 ServiceStatusFilter (Class)

This class is a filter for the service status column.

5.12.1.1.17 ServiceUpTimeFilter (Class)

This class is a filter for the service up time column.

5.12.1.1.18 TextValueColFilter (Class)

This class is a DynListFilter that filters subjects of a dynamic list based on the text value of a column's property.

5.12.1.1.19 WebCHARTService (Class)

This class is a wrapper for a MonitoredServiceInfo CORBA struct. It provides access to data obtained from a WatchdogService regarding a service the watchdog monitors. Access to the Service CORBA object for the service can be obtained via this object if the watchdog has been able to contact the service at least once to obtain its basic information and status. This object provides access to status data, both from the watchdog regarding its ability to contact the service, and from the service itself (assuming the watchdog could obtain the information from the service).

5.12.2 Sequence Diagrams

5.12.2.1 MonitorServicesReqHdlr:processBasicServiceCmd (Sequence Diagram)

This diagram shows the processing required to process a ping, start, stop, or restart service request issued by the administrator. Restart is used as an example, but most of the processing is identical regardless of the specific command being processed. The service to be pinged, stopped, started, or restarted is found in the data model, and its watchdog is retrieved. The watchdog is then called to perform the operation for the given service. It is possible that a service doesn't have a watchdog set ... this would be the case if the service was discovered, but a watchdog that indicates it monitors that service was not discovered or was not able to be contacted to obtain its monitored services status. In either case, the GUI will not show a ping, stop, start, or restart link for that service. If by some chance a request gets through and the service doesn't have a watchdog set, an error will be displayed to the user.

[image: image84.emf][for variables needed

to display confirmation]

Results.vm

AdministratorMonitorServicesReqHdlrHttpServletRequestDataModelWebCHARTServiceWebWatchdogServiceWatchdogServiceContextExample is for restart service, butalso applies to start service, stop service,and ping service (via watchdog).Call appropriate WatchdogServiceoperation. restart is shown as example.processRestartService()[no rights]errorgetParameter("serviceID")String[no service ID]errorgetObject(serviceID)WebCHARTService or null[service not found in cache]errorgetWatchdog()WebWatchdogService or null[service has no watcdog]errorgetRef()WatchdogServicerestartService(token, serviceName)set(varName, value)

Figure 5‑65. MonitorServicesReqHdlr:processBasicServiceCmd (Sequence Diagram)
5.12.2.2 MonitorServicesReqHdlr:processFilterWatchdogs (Sequence Diagram)
This diagram shows the processing that takes place when the user chooses to show or hide the watchdog services that appear within the list of services. A checkbox on the list page will allow the user to choose to show or hide the watchdogs. The action of the user clicking the box will invoke this request, with a parameter that indicates if the user wants the watchdogs hidden or shown. The dynamic list the user is viewing is obtained using the dynamic list request handler delegate, and the current NonWatchdogFilter dynamic list filter is retrieved from the dynamic list object, if any. If the user has requested that watchdogs be hidden, this request ensures a NonwatchdogFilter is added to the dynamic list as a global filter. If the user has requested that the watchdogs be shown, the NonWatchdogFilter is removed from the dynamic list.

[image: image85.emf][hide watchdogs falseAND filter null]nothing to do - redirect to view dyn list[hide watchdogs == false]removeGlobalFilter(NonWatchdogFilter)redirectToViewDynList()AdministratorMonitorServicesReqHdlrDynListReqHdlrDelegateDynListDynListFilterHttpServletRequestNonWatchdogFilterprocessFilterWatchdogs()[no rights]errorgetDynList()DynList or null[dyn list not found]errorlookupGlobalFilter(NonWatchdogFilter.class)DynListFilter or nullgetParamter("hideWatchdogs")String or null[hide watchdogs trueAND filter exists]nothing to do - redirect to view dyn list[hide watchdogs == true]create[hide watchdogs == true]addGlobalFilter(NonWatchdogFilter)

Figure 5‑66. MonitorServicesReqHdlr:processFilterWatchdogs (Sequence Diagram)
5.12.2.3 MonitorServicesReqHdlr:processMonitorServices (Sequence Diagram)
This diagram shows the processing that takes place when an administrator chooses to view the Monitor Services page. The MonitorServicesReqHdlr delegates most of the processing to the DynListReqHdlrDelegate, which makes use of the ServicesDynListSupporter (set during construction) for functionality specific to displaying the Monitor Services page. When called to view the dynamic list, the delegate first checks to see if the dynamic list already exists in the temp object store. If not, it calls the supporter to create the dynamic list. The creation process involves creating each column that will appear in the list and setting its comparator, filter, and default visibility as applicable. A DefaultDynList is created, the columns are added to it, and the key used to persiste column visibility for the list is set. The delegate then stores the dyn list in the temp object store and redirects back to the same request, this time with the ID of the dyn list it just created. When the request is called when the dyn list exists, the supporter is called to get the subjects of the dyn list. In the case of the ServicesDynListSupporter, it simply gets the list of WebCHARTService objects from the GUI cache, as they implement the DynListSubject interface. The delegate then returns the web page as specified during construction as the page to be shown to view the list.

[image: image86.emf][dyn list didn't

previously exist]

redirects back into

this request, see below

If dyn list already existed (found in the temp obj store)

then the following processing is performed

DataModel[dyn list didn't

previously exist]

redirected back in

getDynListSubjects()

getObjectsOfType(WebCHARTService.class)

WebCHARTService[]

DynListSubject[]

setSubjects()

clear filters if needed

set velocity context

variables

null

put var in velocity context

to ensure use of html 4.01

Monitor Services Page

DefaultDynList

AdministratorMonitorServicesReqHdlrDynListReqHdlrDelegateServicesDynListSupporterArrayList<DynListCol>

DefaultDynListCol

DynListComparator

DynListFilter

DefaultDynList

processMonitorServices()[no rights]

error

viewDynList()

[dyn list not exist]

createDynList()

create

create

create

create

setComparator()

setFilter()

add()

[for each column]

toArray()

create

setColumnVisibilitySettingsKey()

DynListCol[]

setDisplayedByDefault()

Figure 5‑67. MonitorServicesReqHdlr:processMonitorServices (Sequence Diagram)
5.12.2.4 MonitorServicesReqHdlr:processPingSitesServices (Sequence Diagram)
This diagram shows the processing that takes place when an administrator chooses to ping all services being monitored by a particular watchdog. The WebWatchdogService object is found in the data model, its CORBA object reference is retrieved, and the server side CORBA object is called to complete this operation. A results page is shown to the user to indicate success or failure initiating this command.

[image: image87.emf]AdministratorMonitorServicesReqHdlrHttpServletRequestDataModelWebWatchdogServiceWatchdogServiceprocessPingSitesServices()[no rights]errorgetParameter("watchdogID")String or null[missing parameter]errorgetObject(watchdogID)WebWatchdogService or null[watchdog not found in cache]errorgetRef()WatchdogServicepingAllMonitoredServices()load variables into velocity context to displayresults pageResults.vm

Figure 5‑68. MonitorServicesReqHdlr:processPingSitesServices (Sequence Diagram)
5.12.2.5 MonitorServicesReqHdlr:processSetServiceLogLevel (Sequence Diagram)
This diagram shows the processing that takes place when the administrator chooses to set the log level for a service. The service id and log level are obtained from the request, and the id is used to find the wrapper for the service in the GUI cache. The CORBA object reference is obtained from the wrapper and called to set the service log level. The results are shown on the Results.vm page.

[image: image88.emf][service not found in cache]errorgetRef()ServicesetLogLevel()load context for results page

Results.vm

AdministratorMonitorServicesReqHdlrHttpServletRequestDataModelWebCHARTServiceServicesetServiceLogLevel()[no rights]errorString or nullgetParameter("logLevelStr")String or null[log level not in req]errorgetObject(id)WebCHARTService or nullgetParameter("idStr")[idStr not present in request]error

Figure 5‑69. MonitorServicesReqHdlr:processSetServiceLogLevel (Sequence Diagram)
5.12.2.6 MonitorServicesReqHdlr:processViewServiceDetails (Sequence Diagram)
This diagram shows the processing that is performed when the administrator chooses to view the details for a service, including services that are watchdogs. The service ID is obtained from the request and it is used to obtain the wrapper object for the service from the GUI cache. The velocity context is loaded, including the wrapper object which may be a normal service or a watchdog, and the ServiceDetails.vm template is returned. The ServiceDetails.vm template can use the isWatchdog() method of the WebCHARTService class to show information specific to watchdog services as appropriate.

[image: image89.emf]String or null[null idStr]errorgetObject(id)WebWatchdogService OR WebCHARTService OR null[object not found in cache]error

ServiceDetails.vm

AdministratorMonitorServicesReqHdlrHttpServletRequestDataModelviewServiceDetails()[no rights]errorgetParameter("idStr")load velocity context

Figure 5‑70. MonitorServicesReqHdlr:processViewServiceDetails (Sequence Diagram)
5.12.2.7 ServicesPingThread:run (Sequence Diagram)
This diagram shows the processing performed by the ServicesPingThread run() method. This is being modified for LevA 687 to ping watchdog services instead of pinging all CHART services. The monitoring of individual service availability now exists in the watchdog service. The GUI only needs to call the watchdog service to get the status for all services the watchdog is monitoring. So rather than calling all of the known services, the GUI now calls all of the watchdogs and asks for the status of all watched services. This ping thread still supports the notion of a normal poll mode and a frequent poll mode. The normal poll mode is meant to be infrequent. When a user accesses the page to view service status, the system puts this thread in frequent mode, which causes the polling to occur more frequently. Both the normal and frequent polling times are controlled by settings in the system profile. This thread will automatically poll the watchdogs (without waiting for the next poll cycle) when frequent mode is first entered.

[image: image90.emf]SystemServicesPingThreadDataModelWebWatchdogServiceSleep amount is determinedby system profile properties,and whether or not in frequentpolling mode. When first entering frequent polling mode, the sleeptime is zero to ensure a poll willbe done right away.See WebWatchdogService:updateMonitoredServicesStatussequence diagram for details.run()determine sleep amount[sleep amt > 0]sleep()getObjectsOfType(WebWatchdogService)WebWatchdogService[]updateMonitoredServicesStatus()[for eachwatchdog][until shutdown]

Figure 5‑71. ServicesPingThread:run (Sequence Diagram)
5.13 GUI DMS - data

5.13.1 Class Diagrams

5.13.1.1 GUIDMSDataClasses (Class Diagram)

This diagram shows GUI data classes related to DMS management.

[image: image91.emf]In WebChart2DMSDMSTravInfoMsg Editor True DisplayIn TempObjStore1*WebNTCIPDeviceModuleNew For R4WebNTCIPDMSStatusWebNTCIPDMSNew for R41WebObjectLocationSupporter«interface»1DMSTravInfoMsg Editor True DisplayIn TempObjStore1WebExternalDMSConfigurationDynamicImageFileKeeper«interface»WebExternalDMSModelObserver«interface»DynamicImageFileKeeper«interface»DMSTravInfoMsgTrueDisplayMgr1DMSTravInfoMsgDataSupplier«interface»*1In WebChart2DMS11WebDMSConfigurationWebChart2DMSWebHHMMRange1WebDMSSearchable«interface»WebSharedResource«interface»WebHARMessageNotifier«interface»FolderEnabled«interface»ArbitratedDevice«interface»NameFilterable«interface»WebDevice«interface»WebChart2DMSConfigurationWebNTCIPDMSConfiguration1WebAdministered«interface»WebDMSTravInfoMsgWebDMS(dms:DMS, id:Identifier, config:WebDMSConfiguration, status : DMSStatus, dm : DataModel, cp : SystemContextProvider)getBeaconState() : booleangetBeaconStatusString() : StringgetConfig() : WebDMSConfigurationgetDMSRef() : DMSgetDynImageFileDir() : FilegetFactoryID() : IdentifiergetGIFEncoder() : MultiMsgGIFEncodergetHardwareStatusString() : StringgetInterLineSpacing() : intgetLastStatusTimeString() : StringgetMultiMessage() : StringgetOpStatusString() : StringgetStatus() : DMSStatusgetStatusString() : StringgetTrueDisplayFileName() : StringgetTrueDisplayImageHeight() : intgetTrueDisplayImageWidth() : intgetTrueDisplayPixelCols() : IntgetTrueDisplayPixelRows() : intisBlank() : booleansetFactoryID(factoryID : Identifier) : voidupdateConfig(config : DMSConfiguration, event : DMSEvent) : voidupdateStatus(status : DMSStatus) : voidperformPixelTest(byte[]: token, CommandStatus cmdStat) : voidsetCentralControlMode(byte[]:token, CommandStatus cmdSTat): voidgetCachedExtendedStatus(): WebDMSExtendedStatusperformBlockingGetExtendedStatusCmd(token:byte[],cmdStatus:CommandStatus):voidgetExtendedStatusTemplateName(): StringgetLastExtendedStatusQueryTimeString(): StringdoesConfiguredDisplaySizeMatchDetectedDisplaySize():booleanm_ntcipDMSRef: NTCIPDMSm_ntcipExtendedStatus: WebNTCIPDMSStatusm_extendedStatusTime: DategetChart2DMSConfig() : WebChart2DMSConfigurationgetChart2DMSRef() : Chart2DMSgetChart2DMSStatus() : Chart2DMSStatusgetEnabledDMSTravInfoMsgID() : IdentifiergetDMSTravInfoMsg(id : Identifier) : WebDMSTravInfoMsggetDMSTravInfoMsgStateString() : StringgetDMSTravInfoMsgStateReason() : StringhasActiveTrafficEvents() : booleanhasInactiveTrafficEvents() : booleanisHARAssociated() : boolean-setupDMSTravInfoMsgs() : voidsupportsEditingCommLossTimeoutInMaintModeOnly() : booleansupportsExtendedStatus() : booleansupportsNTCIPCommunityString() : StringsupportsPixelTest() : booleansupportsReset() : booleanupdateConfig(config : DMSConfiguration, event : DMSEvent) : voidgetControlMode():StringgetCurrentMsgSource():StringgetDetectedDisplayHeightPixels():intgetDetectedDisplayWidthPixels():intgetDetectedDisplayHeightPixelsStr():StringgetDetectedDisplayWidthPixelsStr():StringgetModuleInformation(int):WEBNTCIPDeviceModulegetNumDeviceModuleComponentNodes():intm_status: NTCIPDMSStatusWebDMSTravInfoMsg(dms:WebDMS, msg:DMSTravInfoMsg, dm:DataModel)getTravInfoMsgID() : IdentifiergetTravInfoMsgTemplateID() : IdentifiergetTravelRouteIDs() : Identifier[]isUsingTravelRoute(routeID : Identifier) : booleanuseAutoRowPositioning() : booleangetTrueDisplayMgr() : DMSTravInfoMsgTrueDisplayMgrupdate(msg : DMSTravInfoMsg) : voidm_msg : DMSTravInfoMsgm_dm : DataModelgetModuleComponentType():StringgetModuleMake():StringgetModuleNode():StringgetModuleVersion():Stringm_info:NTCIPDeviceComponentInformationgetCharCols() : intgetCharHeightPixels() : intgetCharRows() : intgetCharWidthPixels() : intgetCommLossTimeoutMinutes() : intgetConfig() : DMSConfigurationgetDefaultLineJustification() : intgetDefaultPageOffTime() : intgetDefaultPageOnTime() : intgetGeometryString() : StringgetLocation() : WebObjectLocationgetMaxPages() : intgetMaxPagesString() : StringgetName() : StringgetPixelCols() : intgetPixelRows() : intgetSignType() : intgetSignTypeString() : StringhasBeacons() : booleanisCharMatrix() : booleanisDefaultLineJustificationCenter() : booleanisDefaultLineJustificationLeft() : booleanisDefaultLineJustificationRight() : booleanisFullMatrix() : booleanisLineMatrix() : booleanisSignTypeOther() : booleanupdateConfig(config : DMSConfiguration) : voidm_config : DMSConfigurationgetExternalSystemID() : StringgetExternalAgencyID() : StringgetExternalObjectID() : StringgetNetworkConnectionSite() : StringgetOwningOrgID() : IdentifiergetDirection() : intgetDirectionDesc() : StringupdateConfig(config : DMSConfiguration) : voidDMSTravInfoMsgTrueDisplayMgr(dms : WebDMS, msg : WebDMSTravInfoMsg, useDummyDataIfMissing : boolean)getGIFFilename() : StringgetImageHeightPixels() : intgetImageWidthPixels() : intgetLastErrorMsg() : StringupdateGIF() : voidgetDMSTravInfoMsg() : WebDMSTravInfoMsgm_dms : WebDMSm_msg : WebDMSTravInfoMsgm_useDummyDataIfMissing : booleanm_filename : Stringm_imageWidth : intm_imageHeight : intm_lastErrorMsg : Stringm_dynamicImageFilesnamesToKeep : ArrayList<String>getCommFailAlertOpCenter() : WebOpCentergetCommFailNotificationGroup() : WebNotificationGroupgetCommPortConfig() : WebCommPortConfiggetChart2DMSConfig() : Chart2DMSConfigurationgetDropAddress() : intgetFormattedPhoneNumber() : StringgetHWFailAlertOpCenter() : WebOpCentergetHWFailNotificationGroup() : WebNotificationGroupgetMaxHalfSecondPageTimeValue() : intgetModelString() : StringgetNetworkConnectionSite() : StringgetNotifierMessage() : StringgetOwningOrgID() : IdentifiergetOwningOrgName() : StringgetPhoneNumber() : StringgetPollingIntervalMInutes() : intgetPortLocationData() : WebPortLocationDatagetIPPortLocationData() : WebIPPortLocationDataisADDCO() : booleanisDeviceLoggingEnabled() : booleanisFP2001() : booleanisFP2001() : booleanisFP9500() : booleanisNotifierMessageUsingBeaconsEnabled() : booleanisNTCIP() : booleanisPCMS() : booleanisPollingEnabled() : booleanisSYLVIA() : booleanisTS3001() : booleangetTravelTimeMsgQueueLevel() : intgetTollRateMsgQueueLevel() : intgetAssociatedTravelRouteIDs() : Identifier[]getDMSTravInfoMsgs() : WebTravInfoMsg[]getDMSTravInfoMsg(id : Identifier) : WebDMSTravInfoMsgisUsingCustomSchedule() : booleanareSpecificTimesEnabled() : booleangetCustomSchedule() : WebTimeOfDayRange[]updateConfig(config : DMSConfiguration) : voidm_c2Config : Chart2DMSConfigurationgetNTCIPCommunityString() : StringgetNTCIPInterCharacterSpacing(): intgetNTCIPPageJustification(): intgetNTCIPFont(): intgetNTCIPLineSpacing(): intgetStartTimeHours() : intgetStartTimeMins() : intgetEndTimeHours() : intgetEndTimeMins() : intm_timeRange : HHMMRange

Figure 5‑72. GUIDMSDataClasses (Class Diagram)

5.13.1.1.1 ArbitratedDevice (Class)

This interface allows a class to use a WebArbQueue to track the current state of a device's arbitration queue.

5.13.1.1.2 DMSTravInfoMsg DataSupplier (Class)

This interface provides data for travel routes used in a DMSTravInfoMsg. It will be used to substitute the template tags with route-specific data, in order to format the template and produce MULTI. This is needed in the GUI for true display, and is needed in the server for formatting messages to send to a DMS. The routeNum parameter corresponds to route numbers contained in the template data tags, and it is a 1-based index. These methods will throw an exception if the requested data is not available.

5.13.1.1.3 DMSTravInfoMsgTrueDisplayMgr (Class)

This class manages the true display image for a single DMS traveler info message.

5.13.1.1.4 DynamicImage FileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the DynImageCleanupTask, which periodically deletes files that are no longer needed.

5.13.1.1.5 FolderEnabled (Class)

This interface provides access to information about an object that can be stored in a folder.

5.13.1.1.6 ModelObserver (Class)

This interface must be implemented by any object which would like to attach to the DataModel as an observer and get updated as system objects are added, deleted or changed.

5.13.1.1.7 NameFilterable (Class)

This java interface is implemented by classes which can be filter by name within the ObjectCache. A NameFilter object is passed into the ObjectCache to select NameFilterable objects in the cache.

5.13.1.1.8 Searchable (Class)

This interface allows objects to be searched for via a substring search.

5.13.1.1.9 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console pages.

5.13.1.1.10 WebChart2DMS (Class)

This class extends WebDMS and wraps the Chart2DMS CORBA interface, providing access to CHART2-specific functionality.

5.13.1.1.11 WebChart2DMSConfiguration (Class)

This class wraps the Chart2DMSConfiguration IDL valuetype and adds accessor methods.

5.13.1.1.12 WebDevice (Class)

This interface contains common functionality for CHART devices.

5.13.1.1.13 WebDMS (Class)

This class represents a dynamic message sign.

5.13.1.1.14 WebDMSConfiguration (Class)

This class wraps the DMSConfiguration IDL structure and adds accessor methods.

5.13.1.1.15 WebDMSTravInfoMsg (Class)

This class wraps the DMSTravInfoMsg IDL structure that represents a traveler info message used by a DMS, and provides accessor methods.

5.13.1.1.16 WebExternalDMS (Class)

This class wraps the ExternalDMS CORBA interface and provides access to cached data specific to external DMSs.

5.13.1.1.17 WebExternalDMS Configuration (Class)

This class wraps the ExternalDMSConfiguration IDL structure and provides accessor methods to access the data.

5.13.1.1.18 WebHARMessageNotifier (Class)

This interface provides access to HAR notification capabilities for a device (DMS or SHAZAM) that is used to notify the public of a HAR message being broadcast.

5.13.1.1.19 WebHHMMRange (Class)

This class contains information about a time-of-day range that contains hours and minutes.

5.13.1.1.20 WebNTCIPDeviceModule (Class)

This class contains methods for retrieving NTCIP device module information

5.13.1.1.21 WebNTCIPDMS (Class)

This class implements an NTCIP specific dms wrapper for performing ntcip specific commands, and implementing a pixel test supporter.

5.13.1.1.22 WebNTCIPDMSConfiguration (Class)

This class contains NTCIP specific DMS configuration methods.

5.13.1.1.23 WebNTCIPDMSStatus (Class)

This class contains methods for retrieving the NTCIP specific extended device status for display on web pages.

5.13.1.1.24 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the WebObjectLocation wrapper class..

5.13.1.1.25 WebSharedResource (Class)

This interface is implemented by any GUI-side wrapper objects representing CHART shared resources in the system, corresponding to the SharedResource IDL interface.
5.13.2 Sequence Diagrams
5.13.2.1 WebDMSFactory:createDMS (Sequence Diagram)

This diagram shows how a WebDMS object is created, or one of its subclasses. The dmsType is used to determine whether the DMS is an external DMS or a CHART DMS. If it is a CHART DMS, the model ID from the Chart2DMSConfiguration is used to determine what model of DMS is used. Depending on these values the CORBA "helper" classes are called to get the type-specific CORBA interface references: ExternalDMS, FP9500DMS, TS3001DMS, SylviaDMS, NTCIPDMS, or PCMSDMS. Then these references are used to create the appropriate type-specific wrapper object, after creating a WebChart2DMSConfiguration to wrap the configuration. If it is a CHART DMS but not one the above types, a WebChart2DMS is created. If it is not a CHART or external DMS, a WebDMS is created.

[image: image92.emf]In R4 create NTCIP specificDMS wrapperNTCIPDMSHelperWebNTCIPDMS[dmsInfo.dmsType == NTCIP_DMS and model is NTCIP)NTCIPDMS[is NTCIPDMS]create(ntcipDMS, id, config, status, dataModel, contextProvider)WebDMSFactorycreateDMS(dmsInfo,dataModel, contextProvider)WebDMSDMSReqHdlrorDiscoverDMSClassesCommandFP9500DMS[is FP9500DMS]create(fp9500DMS, id, config, status, dataModel, contextProvider)[dmsInfo.dmsType == CHART_DMS and model is TS3001]narrow()TS3001DMS[is TS3001DMS]create(ts3001DMS, id, config, status, dataModel, contextProvider)[dmsInfo.dmsType == CHART_DMS and model is Sylvia]narrow()[is SylviaDMS]create(sylviaDMS, id, config, status, dataModel, contextProvider)[dmsInfo.dmsType == CHART_DMS and model is PCMS]narrow()[is PCMSDMS]create(pcmsDMS, id, config, status, dataModel, contextProvider)[WebDMS not created]

create(dms, id, config, status, dataModel, contextProvider)

setFactoryID(dmsInfo.factoryID)

[dmsInfo.dmsType == CHART_DMS and WebDMS not created]narrow()Chart2DMS[is Chart2DMS and WebDMS not created]create(chart2DMS, id, config, status, dataModel, contextProvider)PCMSDMSSylviaDMSWebExternalDMSExternalDMSHelper[is ExternalDMS]create(externalDMS, id, config, status, dataModel, contextProvider)[dmsInfo.dmsType == EXTERNAL_DMS]narrow()IdentifierFP9500DMSHelperWebFP9500DMSTS3001DMSHelperWebTS3001DMSWebSylviaDMSWebPCMSDMSWebChart2DMSWebSylviaDMSHelperWebPCMSDMSHelperWebChart2DMSHelperExternalDMScreate(dmsInfo.dmsID)[dmsInfo.dmsType == CHART_DMS and model is FP9500]narrow()Not shown due to space:a WebDMSConfiguration ortype-specific subclass is createdand passed as a parameter whencreating these objects.

Figure 5‑73. WebDMSFactory:createDMS (Sequence Diagram)

5.14 GUI DMS - servlet

5.14.1 Class Diagrams

5.14.2 Sequence Diagrams
5.14.2.1 chartlite.servlet.dms:parseBasicConfigSettings (Sequence Diagram)

This diagram shows the processing done by the DMSReqHdlr to parse the parameters passed from the DMS basic configuration data form. This existing method is being modified for R3B1 to allow the responsible operations center to be set. This optional field will be used to specify which operations center should receive a device failure alert for a DMS. When not set, device failure alerts for the DMS are disabled.

[image: image93.emf]getParameter("ntcipFontNumber")

getParameter("ntcipFontSpacing")

getParameter("owningOrgID")getParameter("defaultPageOnTimeTenths")

getParameter("communityString")getParameter("dmsCharCols")getParameter("deviceFailureNotficationGroupID")

NTCIP V2, page justification, and intercharacter

font spacing are new for R4

getParameter("ntcipSupportsV2Features")

getParameter("ntcipPageJustification")

getParameter("ntcipInterCharacterFontSpacing")

getParameter("commFailureAlertOpCtrID")

getParameter("commFailureNotificationGroupID")

getParameter("travelTimeArbQueueBucketID")

getParameter("tollRateArbQueueBucketID")

getParameter("hasBeacons")

getParameter("deviceLoggingEnabled")

getParameter("alertOpCenterID")

return Error Message For

Values That Can Be Corrected

by the User

[required params missing]

throw CHARTLiteException

Set Chart2DMSConfiguration Fields

For Parameters With Valid Values

[any invalid values that

are not correctable by the user]

throw CHARTLiteException

DMSReqHdlrDMSReqHdlrHttpServletRequestparseBasicConfigSettingsgetParameter("dmsName")getParameter("locationDesc")getParameter("direction")getParameter("signType")getParameter("signModel")getParameter("dmsCharRows")getParameter("maxPages")getParameter("defaultLineJustification")

getParameter("defaultPageOffTimeTenths")

getParameter("charSizePixels")

Figure 5‑74. chartlite.servlet.dms:parseBasicConfigSettings (Sequence Diagram)

5.14.2.2 chartlite.servlet.dms:setCentralControlMode (Sequence Diagram)

This diagram shows the processing that occurs when an operator chooses to set the control mode of an NTCIP dms to central control mode. This action is only allowed if the operator has the maintain dms right, and the dms is in maintenance mode.

[image: image94.emf]setCentralControlMode(token,dmsID)

HttpServletResponse

url String

return null

setCentralControlMode(token, cmdStatus)

create

WebNTCIPDMSConfiguration

Operator

CommandStatusImpl

getWebNTCIPDMSConfiguration()

[not NTCIP]

DMS not NTCIP

DMSReqHdlr

setCentralControlMode(token, dmsID)

getObjectFromIDString(ObjectCache, DataModel, dmsIDStr)

encodeRedirectUrl("app?action=viewOneCommandStatus&cmdStatusID=[id]")

sendRedirect(url)

WebNTCIPDMS

[error setting central control mode]

error

[no rights to maintain this dms]

insufficient rights

ServletUtil

[dmsID parameter missing]

No dms specified

[dms null]

DMS not found in cache

WebNTCIPDMS or null

NTCIPDMS

Figure 5‑75. chartlite.servlet.dms:setCentralControlMode (Sequence Diagram)

5.15 NTCIPDMSComplianceTester

5.15.1 Class Diagrams

5.15.1.1 NTCIPDMSComplianceTesterClasses (Class Diagram)

This diagram shows the classes for the NTCIP DMS Compliance Tester, a stand alone tool that can be used to check if an NTCIP DMS is compatible with the CHART system.

[image: image95.emf]The ORB and POA are required

to allow the use of a CHART

direct rs232 port, which is normally

served via a port manager on an

FMS server, but is used "in process"

in the compliance tester.

javax.swing.JFileChooser

1

1

uses when

user chooses

to save

results

11

javax.swing.JDialog

javax.swing.JDialog

11

11

javax.swing.JDialog

java.awt.event.ActionListener«interface»java.awt.event.WindowListener«interface»1

1

calls on close

1

1

11

1

1

CommSettingsDlg

SignSettingsDlg

SetMessageDlg

CommSettings

SignSettings

SetMessageSettings

1

11

1

11

1

1

11

NTCIPProtocolHdlr

1

1

uses

1

1

1

uses

1

11

These are the same classes used

within the CHART system to communicate

with an NTCIP DMS.

1

ORB

«interface»

POA

«interface»

TestRunner

11

11

ApplicationExitListener

«interface»

1

1

1

1

1

1

NTCIPDMSComplianceTesterNTCIPDMSTesterMainWindow

javax.swing.JFramejava.awt.Component

11

1

1

CommSettings

SignSettings

SetMessageSettings

The main window has a menubar with menu items and itsmain display area is a scroll panewith a text area for the test output.

n, *

1

n, *

1

NTCIPProtocolHdlrConfig

DataPortUtility

TCPIPPort

1

1

uses

1

1

uses

1

1

uses

1

1

uses

DirectPortImpl

CommPortConfig

«typedef»

TestResultRecorder

«interface»

1

1

1

1

TestActivationListener

«interface»

1

1

QueueableCommand

«interface»

AsyncCommandExecuter

CommandType

«enumeration»

*

1

1

1

CommandQueue

1

getters()

setters()

save():void

m_selectedPortType:PortType

m_commPortName:String

m_commPortConfig:CommPortConfig

m_tcpipPortConfig:IPPortLocationData

m_snmpCommunity:String

m_hdlcFrameRequired:boolean

m_deviceDropAddress:int

m_recvInitialTimeoutMillis:int

m_recvInterCharTimeoutMillis:int

exitApplication():void

main(args:String[]):void

getters()

setters()

save():void

m_defaultFont:int

m_lineSpacing:int

m_defLineJustification:int

m_defPageOffTime:int

m_defPagOnTime:int

m_hasBeacons:boolean

m_maxPages:int

m_vmsCharacterHeightPixels:int

m_vmsCharacterWidthPixels:int

m_vmsSignHeightPixels:int

m_vmsSignWidthPixels:int

m_defPageJustification:int

m_interCharSpacing:int

m_deviceCommLossTimeoutMins:int

setVisible(visibile:boolean):void

getters()

setters()

save():void

m_useMULTI:boolean

m_messageText:String

writeln(message:String):void

testAll():void

testPollNow():void

testSetMessage(setMsgSettings:SetMessageSettings):void

testBlank():void

testPixelTest():void

testGetExtendedStatus():void

testSetCentralControlMode():void

testReset():void

m_cmd:CommandType

m_listener:TestActivationListener

All

PollNow

Blank

SetMessage

PixelTest

GetExtendedStatus

SetCentralControlMode

Reset

Figure 5‑76. NTCIPDMSComplianceTesterClasses (Class Diagram)
5.15.1.1.1 ApplicationExitListener (Class)
This interface is implemented by objects that wish to be notified when the user has requested to exit the application. This interface was introduced to keep the main application class from having to implement the awt action listener and window listener interfaces, most of which do not apply to the main application class (it just needs to know when the user wants to close).

5.15.1.1.2 AsyncCommandExecuter (Class)

This class is a queueable command used to execute a DMS command asynchronous to the main GUI thread, allowing the GUI to process events as a test is running. When the command is run, it notifies the test activation listener based on the command type that was specified during construction.

5.15.1.1.3 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

5.15.1.1.4 CommandType (Class)

This is an enumeration of the types of commands that can be tested.

5.15.1.1.5 CommPortConfig (Class)

This structure is used to pass comm port configuration values during a connection request.

5.15.1.1.6 CommSettings (Class)

This class holds communication related settings for the NTCIPDMSComplianceTester. The settings are persisted in a .props file and are loaded on construction (or set to default values if .props file doesn't yet exist). The save method saves the settings to a .props file. Getters and Setters exist for each of the members in this class.

5.15.1.1.7 CommSettingsDlg (Class)

This class is a dialog that allows the user to modify and save the communications settings used by the compliance tester.

5.15.1.1.8 DataPortUtility (Class)

This class is a wrapper used to hide the underlying port being used to communicate (tcp/ip or an FMS port).

5.15.1.1.9 DirectPortImpl (Class)

This class implements the DirectPort interface as defined in the IDL. Its connect method opens a javax.comm.SerialPort object and sets the port settings according to the baud, data bits, stop bits, and parity that was passed. Its disconnect method closes the javax.comm.SerialPort. This class also implements the send and receive functions as specified in the DataPort IDL interface. The send and receive methods use the read and write methods of the javax.comm.SerialPort object to send and receive bytes on the com port. While the send method contains little processing other than calling the javax.comm.SerialPort object's write method, the receive method contains logic that allows it to receive a burst of bytes before returning. This causes the receive method to return all available bytes on the port and thus helps to prevent the need for multiple calls to receive for a single command response. This class updates a timestamp each time send or receive is called. When its isInactive() method is called, it checks the current time vs. the last send/receive time and if the difference is greater than the current inactivity timeout, it returns true.

5.15.1.1.10 java.awt.Component (Class)

This class is the base class for all graphical user interface components such as buttons and panels.

5.15.1.1.11 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

5.15.1.1.12 java.awt.event.WindowListener (Class)

Listener interface that a class must implement for receiving window events

5.15.1.1.13 javax.swing.JDialog (Class)

This class is part of the JDK and provides functionality for dialog windows.

5.15.1.1.14 javax.swing.JFileChooser (Class)

This class is part of the JDK and provides functionality to allow the user to choose a file from their local file system.

5.15.1.1.15 javax.swing.JFrame (Class)

Java class that displays a frame window.

5.15.1.1.16 NTCIPDMSComplianceTester (Class)

This class contains the main entry point for the NTCIP DMS Compliance tester. Its main method instantiates an instance of the class, whose constructor initializes the application. Initialization includes initializing the ORB and POA, instantiating the various setting objects (which depersist their settings from props files), creating a TestRunner object (which executes the actual tests on command), and creates the main window used to interact with the application.

5.15.1.1.17 NTCIPDMSTesterMainWindow (Class)

This class is the main window for the NTCIP DMS Compliance Tester. It has a JFrame which it populates with various GUI objects, such as a menu bar with menu items, and a scroll pane with a text area so it can show test results. It implements the ActionListener and WindowListener interfaces and handles events for each menu click in addition to the window closing event that is fired if the user closes the window using the X.

5.15.1.1.18 NTCIPProtocolHdlr (Class)

This object contains the protocol for communication with a NTCIP DMS.

5.15.1.1.19 NTCIPProtocolHdlrConfig (Class)

This class contains configuration values specific to the NTCIPProtocolHdlr.

5.15.1.1.20 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote procedure call mechanism for inter-process communication. The ORB is the basic mechanism by which client applications send requests to server applications and receive responses to those requests from servers.

5.15.1.1.21 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant objects.

5.15.1.1.22 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.15.1.1.23 SetMessageDlg (Class)

This class is a dialog that allows the user to specify the message to be displayed on the sign for the set message test. The message can be specified as MULTI or plain text.

5.15.1.1.24 SetMessageSettings (Class)

This class holds settings related to the set message test for the NTCIPDMSComplianceTester. The settings are persisted in a .props file and are loaded on construction (or set to default values if .props file doesn't yet exist). The save method saves the settings to a .props file. Getters and Setters exist for each of the members in this class. The persistence of these settings allows the user to utilize the setMessage() test without having to type in a message every time.

5.15.1.1.25 SignSettings (Class)

This class holds settings related to the sign being tested by the NTCIPDMSComplianceTester. The settings are persisted in a .props file and are loaded on construction (or set to default values if .props file doesn't yet exist). The save method saves the settings to a .props file. Getters and Setters exist for each of the members in this class.

5.15.1.1.26 SignSettingsDlg (Class)

This class is a dialog that allows the user to modify and save the sign settings.

5.15.1.1.27 TCPIPPort (Class)

This class provides access to a TCP/IP port for device communications.

5.15.1.1.28 TestActivationListener (Class)

This interface specifies methods to be implemented by objects that are to be notified when the user activates a test.

5.15.1.1.29 TestResultRecorder (Class)

This interface specifies methods to be implemented by objects that can record the results of tests.

5.15.1.1.30 TestRunner (Class)

This class provides the capability to execute a test. It is notified when it is time to run a test through the TestActivationListener interface, and records all results to its associated TestResultRecorder. This class makes use of existing CHART communications and protocol handler classes to ensure its tests are using the exact code being used by the CHART system to perform this functionality. There is no CHART business logic within this class, it is simply a controller that creates a communications port and passes it to the CHART protocol handler to perform the requested command.

5.15.2 Sequence Diagrams

5.15.2.1 NTCIPDMSTester:pollNow (Sequence Diagram)

This diagram shows the processing that takes place when the user chooses to execute the poll now test. This sequence is prototypical of all tests that may be executed, with slight variations as pointed out below. When the user clicks one of the test menu items, the main window is notified via its ActionListener interface via the actionPerformed() method. The main window's actionPerformed() method determines which test was selected based on the menu item name and creates an AsyncCommandExecuter using the appropriate CommandType enumeration value. This AsyncCommandExecuter is then added to the CommandQueue where it will be executed asynchronously, and the actionPerformed() method returns, allowing the GUI to remain responsive to events (such as the update of its text area where it shows test progress). The CommandQueue calls the AsyncCommandExecuter execute() method which calls the proper TestActivationListener method based on the command type specified during construction of the AsyncCommandExecuter. The TestRunner, which implements the TestActivationListener, performs processing specific to the test that was activated. In the diagram, the pollNow test is shown, however processing for the other tests is very similar. The TestRunner first gets a connected port. The type of port and the specifics of how the connection is made are based on the settings specified in the CommSettings object. When this method returns, either a direct RS232 port is available for use or a TCP/IP port is ready. If any error occurred while connecting, the test result listener is notified and the test ends. Otherwise, an NTCIP protocol handler is created and the appropriate method is called to execute the desired test. If the test succeeds an appropriate message (or messages) are passed to the TestResultListener via the writeln() method. In the case of a poll now test, the current status is also sent to the TestResultListener for display to the user. Similarly, if the test fails, one or more messages are written to the TestResultListener via the writeln() method. The TestResultListener is the main window, and its writeln method writes data to its text area which allows the user to track test progress.

[image: image96.emf]writeln("Polling sign...")

getStatus(DataPortUtility)

DMSDeviceStatus or Exception

[success]

writeln("SUCCESS" + DMSDeviceStatus data)

[Exception]

writeln("FAILED:" + details)

DataPortUtility

NTCIPProtocolHdlr

DMSProtocolHdlrConfig

NTCIPDMSTesterMainWindow(TestResultListener interface)createConnectedPort

create

create

create

setConfiguration()

execute

writeln("Testing Poll Now")

UserNTCIPDMSTesterMainWindow(ActionListener interface)User clicks thePoll Now test menuitem, causing actionevent to be fired.AsyncCommandExecuter

CommandQueueTestRunner(TestActivationListener interface)actionPerformed()

addCommand()

create

testPollNow()

Figure 5‑77. NTCIPDMSTester:pollNow (Sequence Diagram)
6 Mapping to Requirements

The following table shows how the requirements in the Watchdog Feature Requirements document map to design elements contained in this design.

	Tag
	Text
	Feature
	Use Case
	Other Design Elements

	SR1
	ADMINISTER SYSTEMS AND EQUIPMENT
	
	N/A
	

	SR1.5
	INSTALL AND MAINTAIN DEVICES
	
	N/A
	

	SR1.5.2
	PUT EQUIPMENT/ DEVICES ON-LINE
	
	N/A
	

	SR1.5.2.1
	The system shall allow the user with appropriate rights to select (or modify) the equipment device parameters.
	
	
	

	SR1.5.2.1.4
	The system shall support configuration parameters for DMS devices.
	
	
	

	SR1.5.2.1.4.20
	Add / Copy DMS
	
	
	

	SR1.5.2.1.4.20.1
	The system shall allow a suitably privileged user to add a new DMS to the system.
	
	
	

	SR1.5.2.1.4.20.1.8
	The system shall provide the capability to add a new DMS of type “NTCIP” which communicates via the NTCIP DMS protocol.
	
	Create NTCIP DMS
	

	SR1.5.2.1.4.20.1.8.1
	The system shall provide the capability to add a new DMS of type “NTCIP” which communicates via the NTCIP DMS version 1 protocol.
	DMS
	Create NTCIP DMS
	

	SR1.5.2.1.4.20.1.8.2
	The system shall provide the capability to add a new DMS of type “NTCIP” which communicates via the NTCIP DMS version 2 protocol.
	DMS
	Create NTCIP DMS
	chartlite.servlet.dms:parseBasicConfigSettings SD
WebDMSFactory:createDMS SD

	SR1.5.2.1.4.23
	Specify DMS Configuration
	
	
	

	SR1.5.2.1.4.23.18
	The system shall allow the user to specify the duration of the comm loss timeout for a DMS.
	
	
	

	SR1.5.2.1.4.23.18.3
	The system shall support changing the comm loss timeout parameters for a NTCIP model sign only if the DMS is in maintenance mode.
	DMS
	
	

	SR1.5.2.1.4.23.36
	The system shall allow a suitably privileged user to set the inter-character spacing of an NTCIP DMS.
	DMS
	Configure NTCIP DMS
	GUIDMSDataClasses:WebNTCIPDMSConfiguration
GUIDMSDataClasses:WebChart2DMSConfiguration CD
chartlite.servlet.dms:parseBasicConfigSettings SD
WebDMSFactory: createDMS SD
DMSControlModule:SetConfiguration SD

	SR1.5.2.1.4.23.37
	The system shall allow a suitably privileged user to set the default page justification of a NTCIP DMS to top, middle or bottom.
	DMS
	Configure NTCIP DMS
	DMSControlModule:SetConfiguration SD
NTCIPProtocolHdlr:SetMessage SD
GUIDMSDataClasses: WebNTCIPDMSConfiguration CD
GUIDMSDataClasses:WebChart2DMSConfiguration CD
chartlite.servlet.dms:parseBasicConfigSettings SD

	SR1.5.2.1.4.23.39
	The system shall allow a suitably privileged user to set the display behavior of a NTCIP DMS protocol sign if a message fails to be displayed on the sign (This requirement attempts to mitigate the situation where CHART is indicating the message is being displayed but the message is not shown on the sign. This configuration will determine what CHART does if it detects certain errors that could cause a message to fail to be displayed.) (Future)
	DMS
	N/A
	

	SR1.5.2.1.7
	The system shall provide an API to implement DMS functionality specified in the NTCIP standard NEMA TS3.6.
	
	
	

	SR1.5.2.1.7.3
	The system shall automatically set the inter-character spacing before displaying a message for a NTCIP DMS.
	DMS
	Set Message
	NTCIPProtocolHDlr:SetMessage SD
DMSProtocols:DMSProtocolsPks CD

	SR1.5.2.1.7.4
	The system shall automatically ensure that an online sign is in remote/central control mode before displaying a message for a NTCIP DMS
	DMS
	Set Message
	NTCIPProtocolHdlr:SetMessage SD
NTCIPProtocolHdlr:SetCentralControlMode SD
DMSProtocols:DMSProtocolsPks CD

	SR1.5.2.1.7.5
	The system shall automatically set the default page justification before displaying a message for a NTCIP DMS.
	DMS
	Set Message
	NTCIPProtocolHDlr:SetMessage SD

DMSProtocols:DMSProtocolsPks CD

	SR1.5.3
	PERFORM ROUTINE MAINTENANCE. The system shall allow the user with appropriate rights to view the device status, and know why it's not on-line (including the key trouble ticket information) and know the problem is being addressed. The system shall also allow the user to take the device offline of maintenance or other adjustments including resetting the controller. Suggestion/example to be validated: e.g., integrate device maintenance web pages with CHART.
	
	N/A
	

	SR1.5.3.12
	The system shall allow a suitably privileged user to perform routine maintenance on a DMS.
	
	
	

	SR1.5.3.12.1
	The system shall allow a suitably privileged user to set the control mode of an NTCIP DMS
	DMS
	Set NTCIP Control Mode to Central
	SystemInterface:DMSControl CD
DMSProtocolsPkg:DMSProtocolsPkg CD
NTCIPProtocolHdlr:SetCentralControlMode SD
chartlite.servlet.dms:setCentralControlMode SD
GUIDMSDataClasses CD

	SR1.5.3.12.1.1
	The system shall allow a suitably privileged user to change the control mode of a NTCIP DMS in local mode to central (remote) mode.
	DMS
	Set NTCIP Control Mode to Central
	SystemInterface:DMSControl CD
DMSProtocolsPkg:DMSProtocolsPkg CD
NTCIPProtocolHdlr:SetCentralControlMode SD
chartlite.servlet.dms:setCentralControlMode SD
GUIDMSDataClasses CD

	SR1.5.3.12.1.2
	The system shall not allow a user to change the control mode from central (remote) to local.
	DMS
	Set NTCIP Control Mode to Central
	SystemInterface:DMSControl CD
DMSProtocolsPkg:DMSProtocolsPkg CD
NTCIPProtocolHdlr:SetCentralControlMode SD
chartlite.servlet.dms:setCentralControlMode SD
GUIDMSDataClasses CD

	SR1.5.3.12.2
	The system shall allow a suitably privileged user to execute a pixel test for a NTCIP DMS only if the DMS is in maintenance mode.
	DMS
	Perform NTCIP Pixel Test
	SystemInterface:DMSControl CD
DMSProtocolsPkg:DMSProtocolsPkg CD
NTCIPProtocolHdlr:PerformPixelTest SD
GUIDMSDataClasses CD

	SR1.5.7
	VIEW DEVICE DETAILS
	
	N/A
	

	SR1.5.7.1
	View DMS Details
	
	N/A
	

	SR1.5.7.1.1
	View Extended Status
	
	
	

	SR1.5.7.1.1.3
	The system shall allow an operator to view extended status information for a NTCIP DMS.
	DMS
	View NTCIP Extended Status
	SystemInterface:DMSControl CD
DMSProtocolsPkg:DMSProtocolsPkg CD
NTCIPProtocolHdlr:GetExtendedStatus SD
GUIDMSDataClasses CD

	SR1.5.7.1.1.3.1
	The system shall allow a suitably privileged user to view module component information of an NTCIP compliant DMS in the extended status.
	DMS
	View NTCIP Extended Status
	

	SR1.5.7.1.1.3.1.3
	The system shall allow the user to view the device type of the DMS component module.
	DMS
	View NTCIP Extended Status
	SystemInterface:DMSControl CD
DMSProtocolsPkg:DMSProtocolsPkg CD
NTCIPProtocolHdlr:GetExtendedStatus SD
GUIDMSDataClasses CD

	SR1.5.7.1.1.3.1.4
	The system shall allow the user to view the make of the DMS component module.
	DMS
	View NTCIP Extended Status
	SystemInterface:DMSControl CD
DMSProtocolsPkg:DMSProtocolsPkg CD
NTCIPProtocolHdlr:GetExtendedStatus SD
GUIDMSDataClasses CD

	SR1.5.7.1.1.3.1.6
	The system shall allow the user to view the model of the DMS component module.
	DMS
	View NTCIP Extended Status
	SystemInterface:DMSControl CD
DMSProtocolsPkg:DMSProtocolsPkg CD
NTCIPProtocolHdlr:GetExtendedStatus SD
GUIDMSDataClasses CD

	SR1.5.7.1.1.3.1.7
	The system shall allow the user to view the version of the DMS component module.
	DMS
	View NTCIP Extended Status
	SystemInterface:DMSControl CD
DMSProtocolsPkg:DMSProtocolsPkg CD
NTCIPProtocolHdlr:GetExtendedStatus SD
GUIDMSDataClasses CD

	SR1.5.7.1.7
	The system shall show the current status for the DMS.
	DMS
	View NTCIP Status
	SystemInterfaces:DMSControl CD
GUIDMSDataClasses CD

	SR1.5.7.1.7.1
	The current status displayed for a NTCIP DMS shall include the Short Error Status of the DMS. (The possible values include; communications error, power error, attached device error, lamp error, pixel error, photocell error, message error, controller error, temperature warning, climate-control system error, critical temperature error, drum-sign rotor error, door open error and humidity.)
	DMS
	View NTCIP Status
	SystemInterfaces:DMSControl CD
GUIDMSDataClasses CD

	SR1.5.7.1.8
	The system shall indicate the current message source of a NTCIP DMS. (Possible values include: is local, external, central, scheduler based, power recovery, reset, comm. loss, power loss or end duration.)
	DMS
	View NTCIP Status
	SystemInterfaces:DMSControl CD
GUIDMSDataClasses CD

	SR1.5.7.1.9
	The system shall display the sign's size, as reported by the sign, height by width (H x W) in pixels for NTCIP DMSs.
	DMS
	View NTCIP Status
	SystemInterfaces:DMSControl CD
GUIDMSDataClasses CD

	SR1.5.10
	Verify Device Compatibility
	
	N/A
	

	SR1.5.10.1
	The system shall provide a stand alone tool to allow DMS suppliers to test if an NTCIP DMS is compatible with the CHART system.
	DMS
	Verify NTCIP DMS CHART Compatibility
	NTCIPDMSComplianceTesterClasses CD

	SR1.5.10.1.1
	The NTCIP DMS Compatibility Tester shall allow the user to test if the CHART DMS Poll Now feature operates properly on an NTCIP DMS.
	DMS
	Test DMS Poll Now Command
	NTCIPDMSComplianceTesterClasses CD NTCIPDMSTester.pollNow SD

	SR1.5.10.1.2
	The NTCIP DMS Compatibility Tester shall allow the user to test if the CHART DMS Set Message feature operates properly on an NTCIP DMS.
	DMS
	Test Set DMS Message Command
	NTCIPDMSComplianceTesterClasses CD NTCIPDMSTester.pollNow SD

	SR1.5.10.1.2.1
	The NTCIP DMS Compatibility Tester shall allow the user to specify the message using MULTI when testing the set message feature.
	DMS
	Test Set DMS Message Command
	

	SR1.5.10.1.2.2
	The NTCIP DMS Compatibility Tester shall allow the user to specify the message as plain text when testing the set message feature.
	DMS
	Test Set DMS Message Command
	

	SR1.5.10.1.2.2.1
	The NTCIP DMS Compatibility Tester shall automatically format plain text into MULTI using the CHART message formatting algorithm when the user specifies the message as plain text when testing the set message feature.
	DMS
	Test Set DMS Message Command
	

	SR1.5.10.1.3
	The NTCIP DMS Compatibility Tester shall allow the user to test if the CHART Blank DMS feature operates properly on an NTCIP DMS.
	DMS
	Test Blank DMS Command
	NTCIPDMSComplianceTesterClasses CD NTCIPDMSTester.pollNow SD

	SR1.5.10.1.4
	The NTCIP DMS Compatibility Tester shall allow the user to test if the CHART DMS Perform Pixel Test feature operates properly on an NTCIP DMS.
	DMS
	Test Perform DMS Pixel Test Command
	NTCIPDMSComplianceTesterClasses CD NTCIPDMSTester.pollNow SD

	SR1.5.10.1.5
	The NTCIP DMS Compatibility Tester shall allow the user to test if the CHART DMS Get Extended Status feature operates properly on an NTCIP DMS.
	DMS
	Test Get Extended DMS Status Command
	NTCIPDMSComplianceTesterClasses CD NTCIPDMSTester.pollNow SD

	SR1.5.10.1.6
	The NTCIP DMS Compatibility Tester shall allow the user to test if the CHART Reset DMS feature operates properly on an NTCIP DMS.
	DMS
	Test Reset DMS Command
	NTCIPDMSComplianceTesterClasses CD NTCIPDMSTester.pollNow SD

	SR1.5.10.1.7
	The NTCIP DMS Compatibility Tester shall allow the user to test if the CHART Set Central Control Mode feature operates properly on an NTCIP DMS.
	DMS
	Test Set DMS Central Control Mode Command
	NTCIPDMSComplianceTesterClasses CD NTCIPDMSTester.pollNow SD

	SR1.5.10.1.8
	The NTCIP DMS Compatibility Tester shall provide output that shows the user the results of the tests that are run.
	DMS
	View NTCIP DMS Compatibility Test Results
	

	SR1.5.10.1.8.1
	The NTCIP DMS Compatibility Tester shall allow the user to save the test results to a file.
	DMS
	Save NTCIP DMS Compatibility Test Results
	

	SR1.5.10.1.9
	The NTCIP DMS Compatibility Tester shall support connecting to the sign being tested via a direct RS232 connection.
	DMS
	Configure NTCIP DMS Compatibility Tester
	NTCIPDMSComplianceTesterClasses CD

	SR1.5.10.1.10
	The NTCIP DMS Compatibility Tester shall support connecting to the sign being tested via a TCP/IP (network) connection.
	DMS
	Configure NTCIP DMS Compatibility Tester
	NTCIPDMSComplianceTesterClasses CD

	SR1.5.10.1.11
	The NTCIP DMS Compatibility Tester shall allow the user to configure the communication settings used by the tester.
	DMS
	Configure NTCIP DMS Compatibility Tester
	NTCIPDMSComplianceTesterClasses CD

	SR1.5.10.1.11.1
	The NTCIP DMS Compatibility Tester shall allow configuration of the following RS232 communication settings: Comm Port Name, Baud Rate, Data Bits, Parity, Stop Bits, and Flow Control.
	DMS
	Configure NTCIP DMS Compatibility Tester
	NTCIPDMSComplianceTesterClasses CD

	SR1.5.10.1.11.2
	The NTCIP DMS Compatibility Tester shall allow configuration of the following TCP/IP communication settings: IP Address and Port.
	DMS
	Configure NTCIP DMS Compatibility Tester
	NTCIPDMSComplianceTesterClasses CD

	SR1.5.10.1.11.3
	The NTCIP DMS Compatibility Tester shall allow configuration of the following general communication settings: Drop Address, SNMP Community, HDLC Framing Required Flag, Initial Receive Timeout, Inter-character Receive Timeout, Total Receive Duration.
	DMS
	Configure NTCIP DMS Compatibility Tester
	NTCIPDMSComplianceTesterClasses CD

	SR1.5.10.1.12
	The NTCIP DMS Compatibility Tester shall allow the user to configure the sign settings used by the tester.
	DMS
	Configure NTCIP DMS Compatibility Tester
	NTCIPDMSComplianceTesterClasses CD

	SR1.5.10.1.12.1
	The NTCIP DMS Compatibility Tester shall allow configuration of the following sign settings: Sign Height, Sign Width, Character Height, Character Width, Has Beacons flag, Max Pages, Default Page On Time, Default Page Off Time, Default Font, Default Line Spacing, Default Inter Character Spacing, Default Line Justification, Default Page Justification, Comm Loss Timeout.
	DMS
	Configure NTCIP DMS Compatibility Tester
	NTCIPDMSComplianceTesterClasses CD

	SR3
	MONITOR TRAFFIC AND ROADWAYS
	
	
	

	SR3.3
	ISSUE ALERT OR POST INFORMATION
	
	
	

	SR3.3.10
	The system shall prevent duplicate, non-closed alerts from being displayed to users.
	
	
	

	SR3.3.10.11
	Two Service Alerts shall be considered duplicates when the service name they pertain to is identical and the description text is identical.
	Watchdog
	Confirm Unique Alert
	AlertModule CD ProxyAlertClasses CD

	SR3.4
	RECEIVE AND RESPOND TO ALERT
	
	
	

	SR3.4.2
	A suitably privileged user shall be able to manage alerts through the following states: New, Accepted, Delayed, and Closed.
	
	
	

	SR3.4.2.6
	A suitably privileged user shall be able to Resolve alerts in the New, Accepted, and Delayed states.
	
	
	

	SR3.4.2.6.13
	Clicking the Resolve link of a Service alert shall cause the details page for the associated Service to be displayed.
	Watchdog
	Resolve Alert
	resolveAlert SD

	SR9
	SYSTEM MAINTAINABILITY, AVAILABILITY, SECURITY, AND DATA DISTRIBUTION
	
	
	

	SR9.2
	Availability.
	
	
	

	SR9.2.6
	The system shall monitor its service applications for availability.
	Watchdog
	Monitor Services
	DiscoverLocalServicesTask:run SD
WatchdogModule:queryMonitoredServiceAsynch SD
WatchdogModule:queryMonitoredServiceSynch SD

	SR9.2.6.1
	The system shall be capable of monitoring services that implement the CHART Service CORBA interface.
	Watchdog
	Monitor Services
	WatchdogModule:queryMonitoredServiceSynch SD

	SR9.2.6.2
	The system shall allow the list of services to be monitored to be configured via a configuration file.
	Watchdog
	Monitor Services
	WatchdogModule:init SD

	SR9.2.6.3
	The system shall periodically determine if each monitored service is available or unavailable.
	Watchdog
	Poll Services
	WatchdogModule:queryMonitoredServiceSynch SD

	SR9.2.6.3.1
	A service shall be considered available if a call to one of its remote operations (such as ping) is determined to be successfully processed by the service.
	Watchdog
	Maintain Service Status
	WatchdogModule:queryMonitoredServiceSynch SD

	SR9.2.6.3.2
	A service shall be considered unavailable if a call to one of its remote operations (such as ping) is not successfully processed by the service.
	Watchdog
	Maintain Service Status
	WatchdogModule:queryMonitoredServiceSynch SD

	SR9.2.6.3.3
	The system shall allow the rate at which it periodically checks its monitored services to be configurable.
	Watchdog
	Poll Services
	DiscoverLocalServicesTask : run SD

	SR9.2.6.4
	The system shall be capable of generating a Service alert after a service has been determined to be unavailable for a configurable time period.
	Watchdog
	Issue Alert for Failed Service
	WatchdogModule:queryMonitoredServiceSynch SD
CreateServiceAlertCmd : execute SD

	SR9.2.6.4.1
	The system shall send the Service alert to the operations center specified to receive alerts for the monitored service, if any.
	Watchdog
	Issue Alert for Failed Service
	WatchdogModule:queryMonitoredServiceSynch SD
CreateServiceAlertCmd : execute SD

	SR9.2.6.5
	The system shall be capable of sending a notification after a service has been determined to be unavailable for a configurable time period.
	Watchdog
	Send Notification for Failed Service
	queryMonitoredServiceSynch SD

	SR9.2.6.5.1
	The system shall send the Service notification to the notification group specified to receive notifications for the monitored service, if any.
	Watchdog
	Send Notification for Failed Service
	WatchdogServiceClasses CD

	SR9.2.6.6
	The system shall be capable of restarting a service after the service has been determined to be unavailable for a configurable time period.
	Watchdog
	Restart Failed Service
	WatchdogModule:queryMonitoredServiceSynch SD
PerformShellCommandsCmd : execute SD

	SR9.2.6.6.1
	The system shall allow other services to be restarted before or after the restart of the service detected to be unavailable.
	Watchdog
	Restart Failed Service
	WatchdogModule:queryMonitoredServiceSynch SD
PerformShellCommandsCmd : execute SD

	SR9.2.6.6.1.1
	The system shall support the ability to wait a configurable number of seconds after one service is restarted before starting the next.
	Watchdog
	Restart Failed Service
	WatchdogServiceClasses CD Common3 CD
PerformShellCommandsCmd : execute SD

	SR9.2.6.6.1.2
	The system shall support the ability to ignore failures when trying to restart multiple services, or to stop restarts when a failure occurs.
	Watchdog
	Restart Failed Service
	PerformShellCommandsCmd : execute SD

	SR9.2.6.6.2
	The system shall send a Service alert to the operations center specified to receive restart alerts for the monitored service (if any) after a restart has been initiated.
	Watchdog
	Restart Failed Service
	PerformShellCommandsCmd : execute SD

	SR9.2.6.6.2.1
	When multiple services are being restarted, a single alert shall be sent for the entire batch of restarts.
	Watchdog
	Restart Failed Service
	PerformShellCommandsCmd : execute SD

	SR9.2.6.6.3
	The system shall send a service restarted notification to the notification group specified to receive restart notifications for the monitored service (if any) after a restart has been initiated.
	Watchdog
	Restart Failed Service
	PerformShellCommandsCmd : execute SD

	SR9.2.6.6.3.1
	When multiple services are being restarted, a single notification shall be sent for the entire batch of restarts.
	Watchdog
	Restart Failed Service
	PerformShellCommandsCmd : execute SD

	SR9.2.6.7
	The system shall allow monitoring settings to be configurable per monitored service.
	Watchdog
	Monitor Services
	WatchdogModule.init SD

	SR9.2.6.7.1
	The system shall allow the failure alert threshold to be configured per monitored service. (This is the amount of time a service must be deemed unavailable before an alert may be sent.)
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.2
	The system shall allow the op center to receive failure alerts to be configured per monitored service.
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.3
	The system shall allow failure alerts to be configured to be enabled/disabled per monitored service.
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.4
	The system shall allow the failure notification threshold to be configured per monitored service. (This is the amount of time a service must be deemed unavailable before a notification may be issued)
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.5
	The system shall allow the notification group to receive failure notifications for a monitored service to be configured per monitored service.
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.6
	The system shall allow failure notifications to be configured to be enabled/disabled per monitored service.
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.7
	The system shall allow the automatic restart threshold to be configured per monitored service. (This is the time a service must be deemed unavailable before the system will automatically restart the service)
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.8
	The system shall allow automatic restart enabled/disabled to be configured per monitored service.
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.9
	The system shall allow the command(s) used to start the service to be configured per monitored service.
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.10
	The system shall allow the command(s) used to stop the service to be configured per monitored service.
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.11
	The system shall allow the command(s) used to restart the service to be configured per monitored service.
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.12
	The system shall allow the command(s) used to automatically restart the service to be configured per monitored service. (This allows the restart of multiple services when appropriate.)
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.13
	The system shall allow alerts for automatic restarts to be enabled/disabled per monitored service.
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.14
	The system shall allow the op center to receive alerts for an automatic restart to be specified (if any) per monitored service.
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.15
	The system shall allow notifications for automatic restarts to be enabled/disabled per monitored service.
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.7.16
	The system shall allow the notification group to receive automatic restart notifications to be specified (if any) per monitored service.
	Watchdog
	Monitor Services
	Common3 CD

	SR9.2.6.8
	The system shall allow a user to view a list of monitored services.
	Watchdog
	View Services
	MonitorServicesReqHdlr:processMonitorServices SD

	SR9.2.6.8.1
	The system shall show the name of each monitored service.
	Watchdog
	View Services
	ChartServiceDataClasses CD

	SR9.2.6.8.2
	The system shall show the amount of time each service has been running.
	Watchdog
	View Services
	ChartServiceDataClasses CD

	SR9.2.6.8.3
	The system shall show the last time an attempt was made to determine each service’s status
	Watchdog
	View Services
	ChartServiceDataClasses CD

	SR9.2.6.8.4
	The system shall show the result of the last attempt to determine each service’s status, including the response time if service has been contacted.
	Watchdog
	View Services
	ChartServiceDataClasses CD

	SR9.2.6.8.5
	The system shall show the current detected status of each service.
	Watchdog
	View Services
	ChartServiceDataClasses CD

	SR9.2.6.8.6
	The system shall show the last time the status of each service changed.
	Watchdog
	View Services
	ChartServiceDataClasses CD

	SR9.2.6.8.7
	The system shall show the network connection site where each service is hosted.
	Watchdog
	View Services
	ChartServiceDataClasses CD

	SR9.2.6.8.8
	The system shall allow the user to sort the list of monitored services.
	Watchdog
	Sort Services
	ChartServiceServletClasses CD

	SR9.2.6.8.8.1
	The system shall allow the list of monitored services to be sorted by service name.
	Watchdog
	Sort Services
	ChartServiceServletClasses CD

	SR9.2.6.8.8.1.1
	When the list of monitored services is sorted by service name, the secondary sort shall be on network connection site.
	Watchdog
	Sort Services
	ChartServiceServletClasses CD

	SR9.2.6.8.8.2
	The system shall allow the list of monitored services to be sorted by the last time an attempt was made to determine the service’s status.
	Watchdog
	Sort Services
	ChartServiceServletClasses CD

	SR9.2.6.8.8.2.1
	When the list of monitored services is sorted by the last time the service was queried for status, the secondary sort shall be on the network connection site, and the tertiary sort shall be on service name.
	Watchdog
	Sort Services
	ChartServiceServletClasses CD

	SR9.2.6.8.8.3
	The system shall allow the list of monitored services to be sorted by the current detected status.
	Watchdog
	Sort Services
	ChartServiceServletClasses CD

	SR9.2.6.8.8.3.1
	When the list of monitored services is sorted by the current detected status, the secondary sort shall be on the network connection site, and the tertiary sort shall be on service name.
	Watchdog
	Sort Services
	ChartServiceServletClasses CD

	SR9.2.6.8.8.4
	The system shall allow the list of monitored services to be sorted by the last time the status changed.
	Watchdog
	Sort Services
	ChartServiceServletClasses CD

	SR9.2.6.8.8.4.1
	When the list of monitored services is sorted by the last time the status changed, the secondary sort shall be on the network connection site, and the tertiary sort shall be on service name.
	Watchdog
	Sort Services
	ChartServiceServletClasses CD

	SR9.2.6.8.8.5
	The system shall allow the list of monitored services to be sorted by the network connection site.
	Watchdog
	Sort Services
	ChartServiceServletClasses CD

	SR9.2.6.8.8.5.1
	When the list of monitored services is sorted by the network connection site; the secondary sort shall be on the service name.
	Watchdog
	Sort Services
	ChartServiceServletClasses CD

	SR9.2.6.8.8.5.2
	When the list of monitored services is sorted by the network connection site; the secondary sort shall list monitoring agents at the site before the other services.
	Watchdog
	Sort Services
	ChartServiceServletClasses CD

	SR9.2.6.8.9
	The system shall allow the user to filter the list of monitored services.
	Watchdog
	Filter Services
	ChartServiceServletClasses CD

	SR9.2.6.8.9.1
	The system shall allow the list of monitored services to be filtered by the last time an attempt was made to determine the service?’ status.
	Watchdog
	Filter Services
	ChartServiceServletClasses CD

	SR9.2.6.8.9.2
	The system shall allow the list of monitored services to be filtered by the current detected status.
	Watchdog
	Filter Services
	ChartServiceServletClasses CD

	SR9.2.6.8.9.3
	The system shall allow the list of monitored services to be filtered by the last time the status changed.
	Watchdog
	Filter Services
	ChartServiceServletClasses CD

	SR9.2.6.8.9.4
	The system shall allow the list of monitored services to be filtered by the network connection site.
	Watchdog
	Filter Services
	ChartServiceServletClasses CD

	SR9.2.6.8.9.5
	The system shall allow the list of monitored services to be filtered to show or hide monitoring agents. (Monitoring agents are services that monitor other services)
	Watchdog
	Show or Hide Watchdog Services
	MonitorServicesReqHdlr.processViewServiceDetails SD

	SR9.2.6.9
	The system shall allow the user to view details of a monitored service.
	Watchdog
	View Service Details
	MonitorServicesReqHdlr.processViewServiceDetails SD

	SR9.2.6.9.1
	The details of a monitored service shall include the data shown in the service list for the service.
	Watchdog
	View Service Details
	MonitorServicesReqHdlr.processViewServiceDetails SD

	SR9.2.6.9.2
	The details of a monitored service shall include the ability to view information about the agent monitoring the service; if any.
	Watchdog
	View Watchdog Service Details
	MonitorServicesReqHdlr.processViewServiceDetails SD

	SR9.2.6.9.2.1
	The details for the monitoring agent shall include the list of services it is monitoring.
	Watchdog
	View Watchdog Service Details
	MonitorServicesReqHdlr.processViewServiceDetails SD

	SR9.2.6.9.2.2
	The details for the monitoring agent shall include a link to the details page for each service it is monitoring.
	Watchdog
	View Watchdog Service Details
	MonitorServicesReqHdlr.processViewServiceDetails SD

	SR9.2.6.10
	The system shall allow a suitably privileged user to perform operations on a monitored service.
	Watchdog
	Manage Service
	MonitorServicesReqHdlr.processBasicServiceCmd SD

	SR9.2.6.10.1
	The system shall allow the user to initiate a ping of a monitored service.
	Watchdog
	Ping service via Watchdog Ping Service Direct from GUI
	MonitorServicesReqHdlr.processBasicServiceCmd SD
WatchdogServiceImpl.pingService SD

	SR9.2.6.10.2
	The system shall allow the user to start a monitored service that is currently stopped.
	Watchdog
	Stop Service
	MonitorServicesReqHdlr.processBasicServiceCmd SD
WatchdogServiceImpl.stopService SD

	SR9.2.6.10.3
	The system shall allow the user to stop a monitored service that is currently started.
	Watchdog
	Start Service
	MonitorServicesReqHdlr.processBasicServiceCmd SD
WatchdogServiceImpl.startService SD

	SR9.2.6.10.4
	The system shall allow the user to restart a monitored service that is currently started.
	Watchdog
	Restart Service
	MonitorServicesReqHdlr.processBasicServiceCmd SD
WatchdogServiceImpl.reStartService SD

	SR9.2.6.10.5
	The system shall allow the user to set the logging level of a monitored service.
	Watchdog
	Set Service Log Level
	MonitorServicesReqHdlr.setServiceLogLevel SD

	SR9.2.6.11
	The system shall allow the user to initiate a ping of multiple monitored services hosted at a common site (via the monitoring agent).
	Watchdog
	Ping All Watchdog’s Moitored Services
	MonitorServicesReqHdlr.pingAllMonitoredServices

7 Acronyms/Glossary

	CHART
	Coordinated Highways Action Response Team

	COTS
	Commercial Off The Shelf

	DMS
	Dynamic Message Sign

	ITS
	Intelligent Transportation Systems

	NTCIP
	National Transportation Communications for ITS Protocol

	NTCIP Compliance Tester
	A stand alone tool that allows DMS vendors to test if their DMS is compatible with the CHART system.

	SHA
	State Highway Administration

	Watchdog
	A service that monitors other services for availability.

Figure � STYLEREF 1 \s �2��� SEQ Figure * ARABIC \s 1 �5�. CHART R4 Database Architecture

Travel Time

External Events

External DMS

External TSS

DMSs

Backup DMSs

HARS

SHAZAM

TSS

Plans

Libraries

Op Centers

Traffic Events/Cameras

CHART Database Architecture

Replicated

System Configuration data

C2TRIP

CHART

pgtripchart1

C2MWEST

CHART

eastonmwchart1

C2LEC

CHART

fredlecchart1

C2D5AN

CHART

annad5chart1

C2D4BR

CHART

brookd4chart1

C2D3GR

CHART

greenbltchart1

C2ARCH3

C2SOC3

CHART

hanoverchart1

HARs

SHAZAMs

TSS

Op Centers

Traffic Events

Cameras

DMSs

Plans

LIbraries

DMSs

Backup DMSs

Traffic Events

Cameras

Toll Rates

AOC

24/7

MdTA

200 cameras

SOC

Statewide

Archive DB

Replication Master

C2AOC3

CHART

aocchart2

� EMBED PBrush ���

CHART R4 Detailed Design Revisiosn 1
v
3/5/2010

_1291446815.vsd
Cloud

Radio tower

CHART

DMS

EORS

Baltimore Media
Washington Media

Broadcast
Television

_1230309699

