
A CORBA Primer for the CHART II System

(Draft Version)

Table of Contents

2Overview

2IDL

3IDL types

3Synchronous vs. Asynchronous calls

3CORBA Calls: Marshalling and Unmarhsalling Data

4CORBA Objects and IORs

4Narrowing Objects

5The ORB

5The POA

6CORBA Services

6Tie Classes and Servants vs. Impls

7The CORBA Trading Service

7TConsole

7Exceptions

8Client-side Timeouts

9Thread pools and hanging

9Valuetype benefits and drawbacks

10Event Service

10Notification Service

Overview

While there is a large amount of documentation on CORBA, the purpose of this document is to provide a summary of the practical implications of CORBA relevant to the CHART II system.

CORBA is a client/server specification that supports network communication between applications using an object-oriented framework. It is a specification (not a product) that has been developed by an independent committee called OMG (Object Management Group). The specification has been implemented by a number of vendors, which sell their framework-building products to software companies.

Vendors must comply with the specification, and the specification ensures interoperability between CORBA applications developed using products from different vendors. The same concept implies that an application developed using one version of a vendor's implementation can communicate with an application built using a different version. (This of course relies on the specification being backward compatible).

The CORBA specification does not restrict the choice of programming language that can be used to implement it. Vendors have produced CORBA implementations for Java, C++, C, and several other languages. CORBA applications can call each other without caring what language the other application is implemented in. For example, the code for a Java application to call a C++ CORBA application is identical to the code to call another Java CORBA application.

Because CORBA is an object-oriented specification, applications written in programming languages that do not have object-oriented features must necessarily do extra work to support some of the features of CORBA. However, for object-oriented programming languages such as Java, calling a CORBA object across the network is almost as easy as calling a method in the native language.

While the terms "client process" and "server process" are used, CORBA allows a process to act as BOTH a client and a server, depending on which objects need to be used. The concept of "client" or "server" is more accurately described as the role of "caller" and "callee" on any given CORBA call.

While CORBA is language independent and vendor independent, some of the comments below may be valid only for Java and for the Orbacus implementation, which are used in the CHART II project.

IDL

To allow communication between processes, both caller and callee must agree on the format of the data passed between them. The Interface Definition Language (IDL) allows developers to define the application-specific interface. IDL is a language of declarations and it has its own syntax, as defined in the CORBA specification. An IDL file is a text file, and the syntax looks somewhat like a combination of C and C++ header files and Java interface files.

After the IDL is written, the next step is to compile the IDL. The IDL compiler is provided by the vendor and generates code for a specific programming language. This generated code provides most of the CORBA framework for both the client and server to allow CORBA calls to be made. The application developer then fills in the application-specific implementations for each method generated from the IDL, but after this is done, it is easy to hook these implementations into the generated CORBA framework.

Because IDL is a contract between the CORBA applications that use it, it is extremely important for all applications to be built on compatible versions of the IDL. CORBA applications with mismatched IDL can function to some extent, but only when calling a part of the interface that hasn't changed. CORBA checks each call to make sure the parameters, method name, and return value are compatible. If there is a mismatch, it will throw an exception to the client.

IDL types

In the IDL, you can specify the following types of constructs:

-An "interface" represents the operations that a server object will support. All possible calls to server objects are explicitly declared in interfaces, and all interface methods represent calls to the server. An interface cannot contain data members. The client application will have an object representing this interface - an object referred to as a "CORBA Object Reference" or "CORBA Object" for short. CORBA Objects are passed by reference; that is, they are small objects that contain no application data in the client process' memory space. When you call a CORBA Object, it is calling across the network to an object that exists in the memory of the server process. Interfaces can inherit from other interfaces in the IDL. In this case, if a server object implements an interface's operations, then the server must also support the methods defined in the base interface from which it inherits.

- A "struct" is similar to a struct in C. Structs are useful when passing an aggregation of data members to or from a CORBA method. They are passed by value; that is, when a struct is passed to or from a CORBA method, CORBA creates a complete copy of the struct in the recipient process' memory space and the recipient can use that data object as if it had created it.

- A "valuetype" is similar to a struct in that it contains data and is passed by value. However, it can support operations. Valuetypes can also inherit from a base valuetype class. The important distinction between valuetypes and interfaces is that a valuetype is passed by value, while an interface is passed by reference. If you call a method of a valuetype, it is operating on a local copy of an object in your process' memory space. Calling a valuetype method does not call across the network and changing the data does not affect the copy of the valuetype in the other process. (The benefits and drawbacks of using valuetypes will be discussed later).

- A "union" is also passed by value, but may contain any one of several types of user-defined data, depending on the value of a descriminator flag.

- An "exception" is an application level error that can be thrown by the server if there is an application level problem that occurred during the call. If the server throws an exception, it will not return any return value.

Synchronous vs. Asynchronous calls

By default, CORBA methods are called synchronously, meaning that the client waits for the server to complete the operation. You can specify a method to be “oneway” in the IDL, which means that it will be called asynchronously, but then it’s not possible to return data or throw application-level exceptions from the method. We almost always use the synchronous calls in CORBA, with only one or two exceptions to date. If we need to make an asynchronous call, we usually make a synchronous CORBA call and then pass the real work to an application worker thread.

CORBA Calls: Marshalling and Unmarhsalling Data

When the client makes a CORBA call, CORBA must form a byte stream to send across the network to the server. The byte stream includes the ID of the object within the server process, the method name, and the parameters to pass to the object. The process of packing up this data to ship out is called "marshalling". This must be done by method-specific code for each individual CORBA method. On the server side, the byte stream must be reassembled and the language-specific objects must be created for use by the application. This is called "unmarshalling". When the server returns a value back from a method, the value has to be marshalled by the server and unmarshalled by the GUI.

Fortunately, the IDL compiler generates several supporting classes for each interface you define in the IDL. These classes implicitly handle the marshalling and unmarshalling for you, so that none of the code for doing this is called by the application code.

CORBA Objects and IORs

An Interoperable Object Reference (IOR) is a byte sequence that contains enough information to allow CORBA to locate the object on the network. This information includes at least the IP address of the server machine, the port that the object was served on, and the CORBA ID of the object within the server process. As may be obvious from the above data, the IOR is generated by the server.

In general, two different IORs can point to the same CORBA object in the server. One reason for this is that the CORBA specification allows the ORB vendors to put some vendor-specific data into the IOR, which may or may not vary when two IORs are generated for the same object. Therefore you cannot compare IORs to determine whether or not the same object is referenced.

IORs can be converted to and from strings. An IOR string begins with "IOR: " followed by a long sequence of digits. (It is possible to examine the contents of an IOR string using a utility called IORDUMP. This allows you to see the IP address where the object was served, which can be useful during development to see who is running the server.)

Before calling any objects in the server, the client process has to somehow get the IORs (or references) of the objects to call. The most basic way to do this is to use an IOR that has been cut & pasted from the output window (or log file) of a server. However, a better way to solve this problem is to use the CORBA Trading Service, or "trader" for short. (The trader is described below.)

Once an IOR is known, an IOR can be converted to a CORBA Object Reference, which is an object in memory that can be used to contact the server object.

However, the base CORBA Object reference itself does not resemble an application-specific CORBA interface defined in the IDL. To make a specific CORBA call on a specific interface, the generic CORBA Object must be converted to an application-specific type of CORBA object. Conceptually, this operation is similar to a cast in Java or C++ from a base class to a derived class. However, you cannot use a cast to convert the object....this operation requires a narrow() call.

 Narrowing Objects

Narrowing objects is necessary on both the client and server sides when converting a basic CORBA object reference to an application-specific type of CORBA interface. This is always required on the client side, and may be necessary on the server side depending on what needs to be done with the reference.

To narrow a CORBA Object reference for class XYZ, you would call XYZHelper.narrow(), where XYZHelper is a class generated by the IDL compiler. One reason that narrow() is required (as opposed to a cast) is that in the client, when you call the specific type of CORBA object reference, CORBA needs the code to support the marshalling and unmarshalling of the data. But in the client process, a user of the interface, you don't need to be exposed to the gory details of marshalling/unmarshalling...you only need a Java interface that corresponds to the IDL interface declaration. So when you call narrow(), CORBA creates a "stub" object which implements the interface and provides the marshalling/unmarshalling functionality, but it only returns the interface to you...the stub object is created behind the scenes.

Calling a narrow method may or may not cause a call to be made across the network. Therefore, we should assume that narrow() will cause a network call.

The ORB

The ORB is a class that basically drives the CORBA framework for both the client and server, and handles a lot of the low-level functionality. For example, it listens for requests coming into the port, makes sure the appropriate server object is called, coordinates marshalling and unmarshalling as necessary, determines whether a call should time out, etc.

To start up the ORB and let CORBA take over, basically you have to initialize the ORB and then call ORB.run(). ORB.run() is a blocking call. Therefore you have to make sure the rest of your application logic is running on another thread before calling it.

The ORB has several pre-defined properties that it looks for when starting up. These properties are set when initializing the ORB. The properties include things such as the timeout value, the number of threads in the thread pool (for servers), the port to listen on, the trader to use, etc..

When starting a server, if the same combination of IP address and port ID is already being used, the ORB will return a "port in use" error. Therefore you must have different port addresses for each instance of a server process that is running at the same IP address.

The POA

When a call is made to a server, the ORB has to perform a look up of the CORBA object based on the CORBA ID specified in the IOR.

The POA, or Portable Object Adapter, is a class that basically manages the CORBA objects in the server and keeps a lookup table of CORBA IDs. The POA is strictly a server side concept (however, many processes, even the CHART II GUI, act as both a client AND server...therefore the GUI has a POA). When a server wishes to make a servant object available to the world to be called, it must "activate" the object within the POA, which basically just adds the object to a POA so that the ORB can find it.

There can be more than one POA active in a server process. For the CHART II servers, we are currently using two POAs: a "transient" POA, and a "persistent" POA. Each of these POAs is used for different purposes, depending on what type of objects are being served. The difference between the two types of POAs is in how they handle the CORBA object IDs.

The transient POA is used for any objects that are not going to be re-served if the server process is shut down and restarted. Examples of objects for which we use the transient POA are UserLoginSession objects and CommandStatus objects that are served from the GUI. Basically if the GUI is shut down, these objects go out of existence and will never come back because they are only meaningful during the context of that GUI session. When activating an object in the transient POA, calling "poa.activate_object()" will activate the object and return a unique ID (unique for the lifetime of the process). If you then want to do anything with the ID (such as deactivating the object later), you are responsible for keeping track of that ID. If the GUI is then restarted and a server tries to call one of these objects back, the ORB will attempt to look up the object and will throw an OBJECT_NOT_EXIST error.

However, most of the objects in the CHART II system are persistent in nature, so we want to serve the same object when the service is restarted. Any client processes will probably have CORBA object references pointing to those objects, so when the server is restarted we need those references to be valid so that the clients can call as if nothing had happened. This is what the persistent POA is for. If we tried to use the transient POA to do this, it would assign a new CORBA ID to the object when the service is restarted and we would get an OBJECT_NOT_EXIST error.

The persistent POA guarantees that it will generate the same CORBA ID each time an object is activated, provided that you call the POA’s activate_object_with_id() method with the same application-defined ID. To provide the same application ID to the POA each time, we must load our application IDs from a persistent source such as a database or file.

CORBA Services

A CORBA service basically does 3 things when it starts up:

1. Creates the servant objects to be served.

2. Activates the servants in one of the POAs.

3. Publishes the IORs to let the clients know that the objects exist, either via the Trading service or some other mechanism.

When you write a server, you must also provide an implementation class to implement the operations defined in the IDL interface. This class is often called the “impl” class, and is (by convention) named the same as the IDL interface, with an “Impl” suffix. The impl class contains the application code to be executed. The impl object may or may not be the same as the servant…this will be discussed below.

The client will never know that the CORBA object is implemented as an impl class…it cannot directly access data members or methods in the Impl class that are not defined in the IDL. The client only knows about the CORBA object references and the interfaces generated from the IDL.

However, the server code can call the impl’s IDL methods directly, and the methods are invoked as a local Java calls, not as a CORBA calls. When the impl is called directly from the server side, you bypass all of the CORBA framework. You can also use a narrowed CORBA object reference from the server side to call the impl in the server, and this will use the CORBA framework; however, the ORB is smart enough to figure out that it's a local call.

Any time after activating a CORBA object, a server is able to remove the object from the POA by calling deactive_object(), after which the object can no longer be called by the client. Any client attempt to call the object after it is deactivated will result in an OBJECT_NOT_EXIST error.

Tie Classes and Servants vs. Impls

In Java, the details of the relationship between the impl object and the actual CORBA servant object (the object that is served by activating in the POA) depend on whether the IDL compiler has been invoked with the option to generate “tie” classes.

Tie classes are useful in Java when more than one IDL interface could inherit from a base IDL interface and you want to use a common Impl class for the base IDL interface. The marshalling/unmarshalling code and other auxiliary CORBA code is handled by a Java class (not a Java interface) for a given IDL interface. If you don’t use tie classes, you could extend this class with an impl class to provide your implementation methods. However, because Java does not support multiple base classes, you cannot extend both the generated class and the base Impl class, so without tie classes you would need to copy the code for the base IDL interface implementation methods into each of your derived impl classes. With tie classes, you can provide one impl class for the base IDL interface methods, and then you can extend the base impl class with a derived impl class to provide the implementation of the operations for the derived class.

So a tie class is a generated class that provides an extension of the generated marshalling/unmarshalling class and an implementation of the IDL methods, but its implementation is simply to call your impl object to delegate the work to it. You pass the impl when constructing the tie. The tie object is then passed to the POA to act as the CORBA servant, and it calls your impl methods when CORBA calls it.

If tie classes are not used, then the impl IS the servant object. But however the class hierarchy is defined, the server process must activate the servant object in the appropriate POA to allow it to be called via CORBA.

Tie classes are generated on a per-IDL-file basis. Therefore, if one interface in an IDL file requires tie classes, then they will be generated for all interfaces in that IDL file.

The CORBA Trading Service

The CORBA Trading Service is a CORBA service defined in the CORBA spec and implemented by vendors. Its purpose is to serve a database of IORs (served by application servers) to clients, so that the clients can become aware that these CORBA objects exist and can call them. On a conceptual level, the trader is just a database. Once a client retrieves an IOR from the trader, the trader is no longer involved and the client can call the server directly.

Servers can call the trader to publish their IORs, and they can also specify attributes that will help the client processes identify which object(s) in the trader are of interest to them.

The trader also supports querying objects by service type. Before publishing CORBA object references / IORs in the trader, the service type needs to be registered with the trader. The service type identifies the type of object that is represented in the trader. The service types support a hierarchy corresponding to the hierarchy of interfaces defined in the IDL. This allows you to query the trader for all objects supporting a base interface, and it will return all of the objects whose interface derives from the base interface.

Trading services can be linked together in a federation. When the link is in place, querying one trader will also return the IORs from linked traders. You can specify the "hop count" to specify the depth of links to follow.

The trading service database is stored in a set of files. It can be cleaned out by shutting down the trader (CTRL-C) and deleting the files in the trader_db subdirectory, then restarting the trader. It is often useful to delete the trader database files to remove old offers that exist in the trader that are no longer being used.

Offers can also be withdrawn programmatically. However, we do not use this feature before shutting down a service. The reason is, if a server is down and has left its offers in the trader, and then a client is started and queries the trader, we want the client to pick up those IORs so that they can call the objects immediately the next time the service is restarted. If we always withdrew the offers before shutting down the service, we would be forcing the clients to poll the trader more frequently to pick up the objects, or somehow we would have to signal all clients that the server is back up.

We do withdraw objects when a service is not going to be used anymore, or when we move a service from one machine to another. Because the IORs contain the IP address of the server, if we moved the server to a different machine, CORBA calls to those objects would always return a COMM_FAILURE or TRANSIENT error. Our CHART II services allow offers to be withdrawn from the trader by running the service with the "-w" option. This reads a file that we have stored in the server's directory that contains all offer IDs that were previously published in the trader by that service.

TConsole

Tconsole is a GUI application that allows you to look at the contents of the Trading Service. You can look at the offers, the service types, and the links to other traders. You can use it to manually withdraw offers or link to other traders, or to remove the links.

Exceptions

A CORBA call is a network call, so it is always possible for the call to fail, even if there are no application-level exceptions declared in the IDL. Because of the possibility of exceptions and network delays, we try to minimize the number of CORBA calls that are made in the system.

CORBA has a number of exceptions that it throws when a call cannot be completed. All CORBA exceptions are derived from a base SystemException class. This allows the application to differentiate CORBA exceptions from other generic Java Exceptions. The CORBA exceptions are implemented in Java as RuntimeExceptions, which means that application code is not forced to catch the exceptions when making a CORBA call. However, when making a CORBA call, it is very important to be aware that you are making a CORBA call and are not just calling a local object, and to catch the exceptions.

There are 4 CORBA exceptions that we see during the normal runtime conditions that should be caught. Usually it is best to catch these explicitly, at least for logging purposes:

· OBJECT_NOT_EXIST is thrown if the server process could be contacted, but the server's POA(s) do not recognize the object CORBA object ID. This means that the object has not been activated or has been deactivated. This exception is thrown very quickly.

· NO_RESPONSE can be thrown for one of two reasons:

· It is thrown when the server machine could not be contacted within the connection timeout. This can happen because the server machine was shut off, or is no longer connected to the network, or when other network problems occur. By default, the connection timeout is set to infinite. Therefore we must set this parameter when we initialize the ORB on the client side.

· It is thrown when the server machine was contacted and the server is running, but the request was not completed within the request timeout. This can happen either because the server-side operation truly requires a long time to complete, or because the server's request threads are all in use and no threads are available to process the request. By default, the connection timeout is set to infinite. Therefore we must set this parameter when we initialize the ORB on the client side.

Because NO_RESPONSE is a timeout, a CORBA call can hang for a long time before throwing this exception. Obviously, NO_RESPONSE is always thrown by the ORB on the client side, so it is the client-side timeouts that affect the ORB's behavior.

· COMM_FAILURE is thrown when the server machine can be contacted, but the server process is not running. CORBA usually hangs for about 3 seconds before throwing this exception. For our purposes, COMM_FAILURE and TRANSIENT mean the same thing. There have been rare instances when COMM_FAILURE and/or TRANSIENT have been observed when the network has been "flaky". However, 99% of the time, COMM_FAILURE or TRANSIENT indicate that the server process is down.

· TRANSIENT is virtually the same as COMM_FAILURE...it is different due to some internal state in CORBA, but for our purposes either TRANSIENT or COMM_FAILURE indicates that the server process is down.

Additionally, there are compilation and/or coding problems that can cause CORBA to throw exceptions. We do not catch these exceptions explicitly, but we see them sometimes when catching SystemException or Exception.

· MARSHAL often indicates that there is a mismatch in the IDL versions, so that CORBA cannot pack/unpack the given data into/out of the request to send to the server. However, a MARSHAL exception can also mean that the application called the method with bad parameters (e.g., the method parameters are null when they shouldn't be, or fixed-length arrays are the wrong size, or some similar problem.)

· BAD_PARAM is thrown when a bad or unrecognized parameter is passed to the CORBA ORB or POA. It may be thrown for other reasons too, but it always indicates a problem in the code.

· UNKNOWN is throw when a server throws an unexpected exception such as a NullPointerException

Client-side Timeouts

As mentioned above, CORBA by default does not have a client-side timeout and will hang indefinitely when attempting to contact the server machine unless you set a timeout when initializing the ORB. The timeout value applies to all CORBA calls and is not configurable on a per-call basis.

However, even if the timeout is set, there is a situation that can cause a CORBA call to hang indefinitely...this is related to the usage of threads on the server side.

Thread pools and hanging

The CORBA ORB on the server side can be set up to use different threading models when handling requests from clients. The threading model is set when the server's ORB is initialized. For the CHART II project we use a thread pool, meaning that we allow CORBA to allocate up to a fixed number of threads. This number is specified in the server's properties file and is used when initializing the ORB.

When the server's ORB receives a request from a client, it attempts to find a thread to handle the call and do the work. If there is a thread available in the thread pool that is no longer being used, the ORB can reuse the thread; if not, it will create a new thread if the number of threads would not exceed the specified limit.

However, if all threads are already handling requests and a call comes in, the client's call will be blocked until a thread pool thread becomes free. This is dangerous because if for some reason all of the threads become blocked permanently, the client's calling thread could hang indefinitely. This can be a catastrophic problem for the client if it happens. It is bad enough if the client is a GUI; it is even worse if the client is also a server...

In the CHART II system, the servers sometimes need to call each other, so in reality the servers are both clients and servers. One server can be handling a request from a GUI and will have to make a call to another server. If the request thread in the secondary server hangs, it will then hang the request thread in the first server, thereby removing an available thread from each of the servers' thread pools. If this happens enough, both servers will hang any call that is made to either of them. If this happens and there is no request timeout, the only thing that can be done in this case is to restart the server processes. So, it is imperative to avoid lockups in the server code.

To avoid the risk of CORBA calls hanging indefinitely, each process that can make CORBA calls must set its ORB request timeout at startup. However, there may be some legitimate long-running operations performed by the servers, and if the request timeout is too short the call with throw an erroneous NO_RESPONSE exception. Generally speaking, if an operation is expected take a long time to complete (30 seconds or more), it should be made to return quickly and should handle the lengthy operation on a worker thread.

Valuetype benefits and drawbacks

As noted in the IDL section, valuetypes are pass-by-value objects that allow object-oriented behavior such as inheritance, data encapsulation, and methods to act upon the valuetype data. This sounds attractive and allows certain problems to be solved more cleanly than without them, such as passing a base valuetype class to a generic method.

However, using valuetypes has disadvantages due to the fact that they are created locally but require application-specific implementation classes.

· The Event Service must be able to create valuetypes on the fly as it pushes the data to the client. Apparently this is due to some issue with the byte ordering when pushing events to clients. But since the valuetypes have constructors and code in them, the Event Service must have the application's valuetype classes (or JARs) in its class path when it is started. If new valuetypes are added, they must be added to the Event Service's classpath and the EventService must be restarted. If this is not done, you get an exception when trying to push an event.

· Because they are local objects and they have implementations, both client and server processes must be able to create the valuetypes in whatever language the client or server is developed. This probably requires duplicate implementations of the valuetype code if the client and server are in different languages. While this may sound academic, it is not...

· The Orbacus Notification Service was built on a previous version of the ORB that does not support valuetypes. Additionally, it was developed in C++, so even if it did support valuetypes, we would have to somehow make the code available for the valuetype impl classes. This would probably require a re-implementation of the valuetypes in C++.

· Also because they are created locally, a user of the valuetype can supply their own implementation of the valuetypes, which can alter the functionality of the valuetypes. For this reason valuetypes have security implications. Although the servers could check all of the values of the data members and check security tokens of any calls made from the valuetypes, the functionality can still be changed.

· Additionally, if we wanted to use valuetypes to communicate with another system, we would have to supply the valuetype implementations to the other system, and they would have to install them and restart their Event Service, etc..

Event Service

The event service is a CORBA service defined in the CORBA specification that is implemented by vendors. It provides functionality that allows the clients to be updated when changes occur to the application server objects.

Although the event service has several mechanisms for updating, we are currently using the "push" model, where our servers call the event service to push data through event "channels". Event channels are a mechanism for relaying application-specific categories of data. To receive events, a client calls the event service and attaches to it as a listener on that channel. When a server calls the event service, the event service will call all client processes that have previously attached to that channel by calling each listener's push() method.

The names of the event channels and the data types for the event data are defined in the IDL to ensure agreement between the servers and clients.

Note that when the event service calls a application client process, the event service is actually acting as a "client" and the original "client" acts as a server to provide the implementation of the push() call.

The event service does not guarantee delivery of events. If there are network problems, it tries to deliver the event a few times and then gives up, "dropping" the event.

The event service always tries to push all events to all clients that are attached to the channel. However, if you have many CORBA objects that are updating often and are only interested in a small subset of the objects' updates, then the Event Service either uses bandwidth unnecessarily or you have to create an event channel for each object. Due to threading implications in the event service, it is not feasible to create many event channels. For this reason we are using the Notification Service to handle some of our updates. However, until the Notification Service is upgraded, it can't handle many of our events that contain valuetypes.

When running the event service, you must include in the event service's classpath all of the JARs for the valuetype implementations. The event service needs to create these valuetypes if they are use in the event data to be pushed. The event service looks for a specific name for the class to create a valuetype. For example, if you have a valuetype of class XYZ, the event service will attempt to create a new XYZ object using the class XYZDefaultFactory. If these valuetype classes are not available to the event service, the call to push an event will fail.

Notification Service

The Notification Service is also CORBA service defined in the CORBA spec, and is also implemented by vendors. The Notification Service is basically an enhanced version of the Event Service, and in fact it provides the same interfaces and is backward compatible with the Event Service.

The Notification Service provides several advantages over the Event Service. Most of these advantages re not discussed here.

The main feature of the notification service we are using is its support for "filters". Filters allow a client to specify the conditions when the data pushed by the server will be pushed to the client. This saves the bandwidth and processing when compared to the event service.

As noted in the section on valuetypes, the current Notification Service implementation supplied by Orbacus does not support valuetypes. This is the major limitation in its usefulness in the CHART II system, as valuetypes are widely used in the CHART II IDL.

Last printed 08/15/01 4:12 PM
P:\backups\jay\CHART_II_CORBA_Primer.doc
Page 8 of 1

